Goto

Collaborating Authors

 DuBois, Christopher


How Effective is Task-Agnostic Data Augmentation for Pretrained Transformers?

arXiv.org Artificial Intelligence

Task-agnostic forms of data augmentation have proven widely effective in computer vision, even on pretrained models. In NLP similar results are reported most commonly for low data regimes, non-pretrained models, or situationally for pretrained models. In this paper we ask how effective these techniques really are when applied to pretrained transformers. Using two popular varieties of task-agnostic data augmentation (not tailored to any particular task), Easy Data Augmentation (Wei and Zou, 2019) and Back-Translation (Sennrichet al., 2015), we conduct a systematic examination of their effects across 5 classification tasks, 6 datasets, and 3 variants of modern pretrained transformers, including BERT, XLNet, and RoBERTa. We observe a negative result, finding that techniques which previously reported strong improvements for non-pretrained models fail to consistently improve performance for pretrained transformers, even when training data is limited. We hope this empirical analysis helps inform practitioners where data augmentation techniques may confer improvements.


Latent Set Models for Two-Mode Network Data

AAAI Conferences

Two-mode networks are a natural representation for many kinds of relational data. These networks are bipartite graphs consisting of two distinct sets ("modes") of entities. For example, one can model multiple recipient email data as a two-mode network of (a) individuals and (b) the emails that they send or receive. In this work we present a statistical model for two-mode network data which posits that individuals belong to latent sets and that the members of a particular set tend to co-appear. We show how to infer these latent sets from observed data using a Markov chain Monte Carlo inference algorithm. We apply the model to the Enron email corpus, using it to discover interpretable latent structure as well as evaluating its predictive accuracy on a missing data task. Extensions to the model are discussed that incorporate additional side information such as the email's sender or text content, further improving the accuracy of the model.