Du, Xiao
FitLight: Federated Imitation Learning for Plug-and-Play Autonomous Traffic Signal Control
Ye, Yutong, Zhou, Yingbo, Liu, Zhusen, Du, Xiao, Zhou, Hao, Lian, Xiang, Chen, Mingsong
Although Reinforcement Learning (RL)-based Traffic Signal Control (TSC) methods have been extensively studied, their practical applications still raise some serious issues such as high learning cost and poor generalizability. This is because the ``trial-and-error'' training style makes RL agents extremely dependent on the specific traffic environment, which also requires a long convergence time. To address these issues, we propose a novel Federated Imitation Learning (FIL)-based framework for multi-intersection TSC, named FitLight, which allows RL agents to plug-and-play for any traffic environment without additional pre-training cost. Unlike existing imitation learning approaches that rely on pre-training RL agents with demonstrations, FitLight allows real-time imitation learning and seamless transition to reinforcement learning. Due to our proposed knowledge-sharing mechanism and novel hybrid pressure-based agent design, RL agents can quickly find a best control policy with only a few episodes. Moreover, for resource-constrained TSC scenarios, FitLight supports model pruning and heterogeneous model aggregation, such that RL agents can work on a micro-controller with merely 16{\it KB} RAM and 32{\it KB} ROM. Extensive experiments demonstrate that, compared to state-of-the-art methods, FitLight not only provides a superior starting point but also converges to a better final solution on both real-world and synthetic datasets, even under extreme resource limitations.
SAFL: Structure-Aware Personalized Federated Learning via Client-Specific Clustering and SCSI-Guided Model Pruning
Li, Nan, Wang, Xiaolu, Du, Xiao, Cai, Puyu, Wang, Ting
Federated Learning (FL) enables clients to collaboratively train machine learning models without sharing local data, preserving privacy in diverse environments. While traditional FL approaches preserve privacy, they often struggle with high computational and communication overhead. To address these issues, model pruning is introduced as a strategy to streamline computations. However, existing pruning methods, when applied solely based on local data, often produce sub-models that inadequately reflect clients' specific tasks due to data insufficiency. To overcome these challenges, this paper introduces SAFL (Structure-Aware Federated Learning), a novel framework that enhances personalized federated learning through client-specific clustering and Similar Client Structure Information (SCSI)-guided model pruning. SAFL employs a two-stage process: initially, it groups clients based on data similarities and uses aggregated pruning criteria to guide the pruning process, facilitating the identification of optimal sub-models. Subsequently, clients train these pruned models and engage in server-based aggregation, ensuring tailored and efficient models for each client. This method significantly reduces computational overhead while improving inference accuracy. Extensive experiments demonstrate that SAFL markedly diminishes model size and improves performance, making it highly effective in federated environments characterized by heterogeneous data.
When Foresight Pruning Meets Zeroth-Order Optimization: Efficient Federated Learning for Low-Memory Devices
Zhang, Pengyu, Liu, Yingjie, Zhou, Yingbo, Du, Xiao, Wei, Xian, Wang, Ting, Chen, Mingsong
Although Federated Learning (FL) enables collaborative learning in Artificial Intelligence of Things (AIoT) design, it fails to work on low-memory AIoT devices due to its heavy memory usage. To address this problem, various federated pruning methods are proposed to reduce memory usage during inference. However, few of them can substantially mitigate the memory burdens during pruning and training. As an alternative, zeroth-order or backpropagation-free (BP-Free) methods can partially alleviate the memory consumption, but they suffer from scaling up and large computation overheads, since the gradient estimation error and floating point operations (FLOPs) increase as the dimensionality of the model parameters grows. In this paper, we propose a federated foresight pruning method based on Neural Tangent Kernel (NTK), which can seamlessly integrate with federated BP-Free training frameworks. We present an approximation to the computation of federated NTK by using the local NTK matrices. Moreover, we demonstrate that the data-free property of our method can substantially reduce the approximation error in extreme data heterogeneity scenarios. Since our approach improves the performance of the vanilla BP-Free method with fewer FLOPs and truly alleviates memory pressure during training and inference, it makes FL more friendly to low-memory devices. Comprehensive experimental results obtained from simulation- and real test-bed-based platforms show that our federated foresight-pruning method not only preserves the ability of the dense model with a memory reduction up to 9x but also boosts the performance of the vanilla BP-Free method with dramatically fewer FLOPs.
Situation-Dependent Causal Influence-Based Cooperative Multi-agent Reinforcement Learning
Du, Xiao, Ye, Yutong, Zhang, Pengyu, Yang, Yaning, Chen, Mingsong, Wang, Ting
Learning to collaborate has witnessed significant progress in multi-agent reinforcement learning (MARL). However, promoting coordination among agents and enhancing exploration capabilities remain challenges. In multi-agent environments, interactions between agents are limited in specific situations. Effective collaboration between agents thus requires a nuanced understanding of when and how agents' actions influence others. To this end, in this paper, we propose a novel MARL algorithm named Situation-Dependent Causal Influence-Based Cooperative Multi-agent Reinforcement Learning (SCIC), which incorporates a novel Intrinsic reward mechanism based on a new cooperation criterion measured by situation-dependent causal influence among agents. Our approach aims to detect inter-agent causal influences in specific situations based on the criterion using causal intervention and conditional mutual information. This effectively assists agents in exploring states that can positively impact other agents, thus promoting cooperation between agents. The resulting update links coordinated exploration and intrinsic reward distribution, which enhance overall collaboration and performance. Experimental results on various MARL benchmarks demonstrate the superiority of our method compared to state-of-the-art approaches.