Goto

Collaborating Authors

 Du, Kuntai


DroidSpeak: KV Cache Sharing for Cross-LLM Communication and Multi-LLM Serving

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are increasingly employed in complex workflows, where different LLMs and fine-tuned variants collaboratively address complex tasks. However, these systems face significant inefficiencies due to redundant context processing of the shared context. We propose DroidSpeak, a framework that optimizes context sharing between fine-tuned LLMs derived from the same foundational model. DroidSpeak identifies critical layers in the KV cache and selectively recomputes them, enabling effective reuse of intermediate data while maintaining high accuracy. Our approach balances computational efficiency and task fidelity, significantly reducing inference latency and throughput bottlenecks. Experiments on diverse datasets and model pairs demonstrate that DroidSpeak achieves up to 3x higher throughputs and 2.6x faster prefill times with negligible accuracy loss compared to full recomputation.


RAGServe: Fast Quality-Aware RAG Systems with Configuration Adaptation

arXiv.org Artificial Intelligence

RAG (Retrieval Augmented Generation) allows LLMs (large language models) to generate better responses with external knowledge, but using more external knowledge often improves generation quality at the expense of response delay. Prior work either reduces the response delay (through better scheduling of RAG queries) or strives to maximize quality (which involves tuning the RAG workflow), but they fall short in optimizing the tradeoff between the delay and quality of RAG responses. This paper presents RAGServe, the first RAG system that jointly schedules queries and adapts the key RAG configurations of each query, such as the number of retrieved text chunks and synthesis methods, in order to balance quality optimization and response delay reduction. Using 4 popular RAG-QA datasets, we show that compared with the state-of-the-art RAG optimization schemes, RAGServe reduces the generation latency by $1.64-2.54\times$ without sacrificing generation quality.


LLMSteer: Improving Long-Context LLM Inference by Steering Attention on Reused Contexts

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks such as question answering, summarization, and reasoning (llm [a,b,c]). To enhance their reliability, LLMs are often augmented with domain-specific or user-specific knowledge that extends beyond their inherent training data (Lewis et al. [2020], Jiang et al. [2023], Chen et al. [2024]). However, incorporating these supplemental contexts, which can exceed thousands of tokens (Jin et al. [2024], Gao et al. [2023]), presents two challenges: (1) models often struggle to comprehend long context (e.g., lost-in-the-middle problem (Liu et al. [2023a], Junqing et al. [2023])) and (2) processing long context incurs substantial runtime costs (Liu et al. [2024], Lin et al. [2024], Zhong et al. [2024]). Since the Key-Value (KV) cache of the same context text chunks is often reused multiple times (Liu et al. [2023b], Yao et al. [2024], Jin et al. [2024]), many recent systems adopt prefix caching (Jin et al. [2024], Liu et al. [2023b], Qin et al. [2024]), which stores the KV caches for the frequently reused contexts such that LLMs no longer need to prefill these contexts repeatedly. However, the model persists in losing track of key information from the context as its KV pairs remain unchanged. So, is there a way to simultaneously achieve high efficiency and high quality without fine-tuning models?


Do Large Language Models Need a Content Delivery Network?

arXiv.org Artificial Intelligence

As the use of large language models (LLMs) expands rapidly, so does the range of knowledge needed to supplement various LLM queries. Thus, enabling flexible and efficient injection of new knowledge in LLM inference is critical. Three high-level options exist: (i) embedding the knowledge in LLM's weights (i.e., fine-tuning), (ii) including the knowledge as a part of LLM's text input (i.e., in-context learning), or (iii) injecting the KV caches of the new knowledge to LLM during prefill. This paper argues that, although fine-tuning and in-context learning are popular, using KV caches as the medium of knowledge could simultaneously enable more modular management of knowledge injection and more efficient LLM serving with low cost and fast response. To realize these benefits, we envision a Knowledge Delivery Network (KDN), a new system component in LLM services that dynamically optimizes the storage, transfer, and composition of KV cache across LLM engines and other compute and storage resources. We believe that, just like content delivery networks (CDNs), such as Akamai, enabled the success of the Internet ecosystem through their efficient data delivery, KDNs will be critical to the success of LLM applications through their efficient knowledge delivery. We have open-sourced a KDN prototype at https://github.com/LMCache/LMCache.


CacheBlend: Fast Large Language Model Serving for RAG with Cached Knowledge Fusion

arXiv.org Artificial Intelligence

Large language models (LLMs) often incorporate multiple text chunks in their inputs to provide the necessary contexts. To speed up the prefill of the long LLM inputs, one can pre-compute the KV cache of a text and re-use the KV cache when the context is reused as the prefix of another LLM input. However, the reused text chunks are not always the input prefix, and when they are not, their precomputed KV caches cannot be directly used since they ignore the text's cross-attention with the preceding text in the LLM input. Thus, the benefits of reusing KV caches remain largely unrealized. This paper tackles just one question: when an LLM input contains multiple text chunks, how to quickly combine their precomputed KV caches in order to achieve the same generation quality as the expensive full prefill (i.e., without reusing KV cache)? We present CacheBlend, a scheme that reuses the pre-computed KV caches, regardless prefix or not, and selectively recomputes the KV values of a small subset of tokens to partially update each reused KV cache. In the meantime,the small extra delay for recomputing some tokens can be pipelined with the retrieval of KV caches within the same job,allowing CacheBlend to store KV caches in slower devices with more storage capacity while retrieving them without increasing the inference delay. By comparing CacheBlend with the state-of-the-art KV cache reusing schemes on three open-source LLMs of various sizes and four popular benchmark datasets of different tasks, we show that CacheBlend reduces time-to-first-token (TTFT) by 2.2-3.3X and increases the inference throughput by 2.8-5X, compared with full KV recompute, without compromising generation quality or incurring more storage cost.


Chatterbox: Robust Transport for LLM Token Streaming under Unstable Network

arXiv.org Artificial Intelligence

To render each generated token in real time, the LLM server generates response tokens one by one and streams each generated token (or group of a few tokens) through the network to the user right after it is generated, which we refer to as LLM token streaming. However, under unstable network conditions, the LLM token streaming experience could suffer greatly from stalls since one packet loss could block the rendering of tokens contained in subsequent packets even if they arrive on time. With a real-world measurement study, we show that current applications including ChatGPT, Claude, and Bard all suffer from increased stall under unstable network. For this emerging token streaming problem in LLM Chatbots, we propose a novel transport layer scheme, called Chatterbox, which puts new generated tokens as well as currently unacknowledged tokens in the next outgoing packet. This ensures that each packet contains some new tokens and can be independently rendered when received, thus avoiding aforementioned stalls caused by missing packets. Through simulation under various network conditions, we show Chatterbox reduces stall ratio (proportion of token rendering wait time) by 71.0% compared to the token streaming method commonly used by real chatbot applications and by 31.6% compared to a custom packet duplication scheme. By tailoring Chatterbox to fit the token-by-token generation of LLM, we enable the Chatbots to respond like an eloquent speaker for users to better enjoy pervasive AI.


CacheGen: Fast Context Loading for Language Model Applications

arXiv.org Artificial Intelligence

As large language models (LLMs) take on more complex tasks, their inputs incorporate longer contexts to respond to questions that require domain knowledge or user-specific conversational histories. Yet, using long contexts poses a challenge for responsive LLM systems, as nothing can be generated until all the contexts are fetched to and processed by the LLM. Existing systems optimize only the computation delay in context processing (e.g., by caching intermediate key-value features of the text context) but often cause longer network delays in context fetching (e.g., key-value features consume orders of magnitude larger bandwidth than the text context). This paper presents CacheGen to minimize the delays in fetching and processing contexts for LLMs. CacheGen reduces the bandwidth needed for transmitting long contexts' key-value (KV) features through a novel encoder that compresses KV features into more compact bitstream representations. The encoder combines adaptive quantization with a tailored arithmetic coder, taking advantage of the KV features' distributional properties, such as locality across tokens. Furthermore, CacheGen minimizes the total delay in fetching and processing a context by using a controller that determines when to load the context as compressed KV features or raw text and picks the appropriate compression level if loaded as KV features. We test CacheGen on three models of various sizes and three datasets of different context lengths. Compared to recent methods that handle long contexts, CacheGen reduces bandwidth usage by 3.7-4.3x and the total delay in fetching and processing contexts by 2.7-3x while maintaining similar LLM performance on various tasks as loading the text contexts.


Automatic and Efficient Customization of Neural Networks for ML Applications

arXiv.org Artificial Intelligence

ML APIs have greatly relieved application developers of the burden to design and train their own neural network models -- classifying objects in an image can now be as simple as one line of Python code to call an API. However, these APIs offer the same pre-trained models regardless of how their output is used by different applications. This can be suboptimal as not all ML inference errors can cause application failures, and the distinction between inference errors that can or cannot cause failures varies greatly across applications. To tackle this problem, we first study 77 real-world applications, which collectively use six ML APIs from two providers, to reveal common patterns of how ML API output affects applications' decision processes. Inspired by the findings, we propose ChameleonAPI, an optimization framework for ML APIs, which takes effect without changing the application source code. ChameleonAPI provides application developers with a parser that automatically analyzes the application to produce an abstract of its decision process, which is then used to devise an application-specific loss function that only penalizes API output errors critical to the application. ChameleonAPI uses the loss function to efficiently train a neural network model customized for each application and deploys it to serve API invocations from the respective application via existing interface. Compared to a baseline that selects the best-of-all commercial ML API, we show that ChameleonAPI reduces incorrect application decisions by 43%.


OneAdapt: Fast Adaptation for Deep Learning Applications via Backpropagation

arXiv.org Artificial Intelligence

Deep learning inference on streaming media data, such as object detection in video or LiDAR feeds and text extraction from audio waves, is now ubiquitous. To achieve high inference accuracy, these applications typically require significant network bandwidth to gather high-fidelity data and extensive GPU resources to run deep neural networks (DNNs). While the high demand for network bandwidth and GPU resources could be substantially reduced by optimally adapting the configuration knobs, such as video resolution and frame rate, current adaptation techniques fail to meet three requirements simultaneously: adapt configurations (i) with minimum extra GPU or bandwidth overhead; (ii) to reach near-optimal decisions based on how the data affects the final DNN's accuracy, and (iii) do so for a range of configuration knobs. This paper presents OneAdapt, which meets these requirements by leveraging a gradient-ascent strategy to adapt configuration knobs. The key idea is to embrace DNNs' differentiability to quickly estimate the accuracy's gradient to each configuration knob, called AccGrad. Specifically, OneAdapt estimates AccGrad by multiplying two gradients: InputGrad (i.e. how each configuration knob affects the input to the DNN) and DNNGrad (i.e. how the DNN input affects the DNN inference output). We evaluate OneAdapt across five types of configurations, four analytic tasks, and five types of input data. Compared to state-of-the-art adaptation schemes, OneAdapt cuts bandwidth usage and GPU usage by 15-59% while maintaining comparable accuracy or improves accuracy by 1-5% while using equal or fewer resources.