Goto

Collaborating Authors

 Du, Chao


Nonparametric Generative Modeling with Conditional Sliced-Wasserstein Flows

arXiv.org Artificial Intelligence

Sliced-Wasserstein Flow (SWF) is a promising approach to nonparametric generative modeling but has not been widely adopted due to its suboptimal generative quality and lack of conditional modeling capabilities. In this work, we make two major contributions to bridging this gap. First, based on a pleasant observation that (under certain conditions) the SWF of joint distributions coincides with those of conditional distributions, we propose Conditional Sliced-Wasserstein Flow (CSWF), a simple yet effective extension of SWF that enables nonparametric conditional modeling. Second, we introduce appropriate inductive biases of images into SWF with two techniques inspired by local connectivity and multiscale representation in vision research, which greatly improve the efficiency and quality of modeling images. With all the improvements, we achieve generative performance comparable with many deep parametric generative models on both conditional and unconditional tasks in a purely nonparametric fashion, demonstrating its great potential.


Adversarial Constrained Bidding via Minimax Regret Optimization with Causality-Aware Reinforcement Learning

arXiv.org Artificial Intelligence

The proliferation of the Internet has led to the emergence of online advertising, driven by the mechanics of online auctions. In these repeated auctions, software agents participate on behalf of aggregated advertisers to optimize for their long-term utility. To fulfill the diverse demands, bidding strategies are employed to optimize advertising objectives subject to different spending constraints. Existing approaches on constrained bidding typically rely on i.i.d. train and test conditions, which contradicts the adversarial nature of online ad markets where different parties possess potentially conflicting objectives. In this regard, we explore the problem of constrained bidding in adversarial bidding environments, which assumes no knowledge about the adversarial factors. Instead of relying on the i.i.d. assumption, our insight is to align the train distribution of environments with the potential test distribution meanwhile minimizing policy regret. Based on this insight, we propose a practical Minimax Regret Optimization (MiRO) approach that interleaves between a teacher finding adversarial environments for tutoring and a learner meta-learning its policy over the given distribution of environments. In addition, we pioneer to incorporate expert demonstrations for learning bidding strategies. Through a causality-aware policy design, we improve upon MiRO by distilling knowledge from the experts. Extensive experiments on both industrial data and synthetic data show that our method, MiRO with Causality-aware reinforcement Learning (MiROCL), outperforms prior methods by over 30%.


Exploring Model Dynamics for Accumulative Poisoning Discovery

arXiv.org Artificial Intelligence

Adversarial poisoning attacks pose huge threats to various machine learning applications. Especially, the recent accumulative poisoning attacks show that it is possible to achieve irreparable harm on models via a sequence of imperceptible attacks followed by a trigger batch. Due to the limited data-level discrepancy in real-time data streaming, current defensive methods are indiscriminate in handling the poison and clean samples. In this paper, we dive into the perspective of model dynamics and propose a novel information measure, namely, Memorization Discrepancy, to explore the defense via the model-level information. By implicitly transferring the changes in the data manipulation to that in the model outputs, Memorization Discrepancy can discover the imperceptible poison samples based on their distinct dynamics from the clean samples. We thoroughly explore its properties and propose Discrepancy-aware Sample Correction (DSC) to defend against accumulative poisoning attacks. Extensive experiments comprehensively characterized Memorization Discrepancy and verified its effectiveness. The code is publicly available at: https://github.com/tmlr-group/Memorization-Discrepancy.


Bag of Tricks for Training Data Extraction from Language Models

arXiv.org Artificial Intelligence

With the advance of language models, privacy protection is receiving more attention. Training data extraction is therefore of great importance, as it can serve as a potential tool to assess privacy leakage. However, due to the difficulty of this task, most of the existing methods are proof-of-concept and still not effective enough. In this paper, we investigate and benchmark tricks for improving training data extraction using a publicly available dataset. Because most existing extraction methods use a pipeline of generating-then-ranking, i.e., generating text candidates as potential training data and then ranking them based on specific criteria, our research focuses on the tricks for both text generation (e.g., sampling strategy) and text ranking (e.g., token-level criteria). The experimental results show that several previously overlooked tricks can be crucial to the success of training data extraction. Based on the GPT-Neo 1.3B evaluation results, our proposed tricks outperform the baseline by a large margin in most cases, providing a much stronger baseline for future research. The code is available at https://github.com/weichen-yu/LM-Extraction.


Better Diffusion Models Further Improve Adversarial Training

arXiv.org Artificial Intelligence

It has been recognized that the data generated by the denoising diffusion probabilistic model (DDPM) improves adversarial training. After two years of rapid development in diffusion models, a question naturally arises: can better diffusion models further improve adversarial training? This paper gives an affirmative answer by employing the most recent diffusion model which has higher efficiency ($\sim 20$ sampling steps) and image quality (lower FID score) compared with DDPM. Our adversarially trained models achieve state-of-the-art performance on RobustBench using only generated data (no external datasets). Under the $\ell_\infty$-norm threat model with $\epsilon=8/255$, our models achieve $70.69\%$ and $42.67\%$ robust accuracy on CIFAR-10 and CIFAR-100, respectively, i.e. improving upon previous state-of-the-art models by $+4.58\%$ and $+8.03\%$. Under the $\ell_2$-norm threat model with $\epsilon=128/255$, our models achieve $84.86\%$ on CIFAR-10 ($+4.44\%$). These results also beat previous works that use external data. We also provide compelling results on the SVHN and TinyImageNet datasets. Our code is available at https://github.com/wzekai99/DM-Improves-AT.


Does Federated Learning Really Need Backpropagation?

arXiv.org Artificial Intelligence

Federated learning (FL) is a general principle for decentralized clients to train a server model collectively without sharing local data. FL is a promising framework with practical applications, but its standard training paradigm requires the clients to backpropagate through the model to compute gradients. Since these clients are typically edge devices and not fully trusted, executing backpropagation on them incurs computational and storage overhead as well as white-box vulnerability. In light of this, we develop backpropagation-free federated learning, dubbed BAFFLE, in which backpropagation is replaced by multiple forward processes to estimate gradients. BAFFLE is 1) memory-efficient and easily fits uploading bandwidth; 2) compatible with inference-only hardware optimization and model quantization or pruning; and 3) well-suited to trusted execution environments, because the clients in BAFFLE only execute forward propagation and return a set of scalars to the server. Empirically we use BAFFLE to train deep models from scratch or to finetune pretrained models, achieving acceptable results. Code is available in https://github.com/FengHZ/BAFFLE.


CoSDA: Continual Source-Free Domain Adaptation

arXiv.org Artificial Intelligence

Without access to the source data, source-free domain adaptation (SFDA) transfers knowledge from a source-domain trained model to target domains. Recently, SFDA has gained popularity due to the need to protect the data privacy of the source domain, but it suffers from catastrophic forgetting on the source domain due to the lack of data. To systematically investigate the mechanism of catastrophic forgetting, we first reimplement previous SFDA approaches within a unified framework and evaluate them on four benchmarks. We observe that there is a trade-off between adaptation gain and forgetting loss, which motivates us to design a consistency regularization to mitigate forgetting. In particular, we propose a continual source-free domain adaptation approach named CoSDA, which employs a dual-speed optimized teacher-student model pair and is equipped with consistency learning capability. Our experiments demonstrate that CoSDA outperforms state-of-the-art approaches in continuous adaptation. Notably, our CoSDA can also be integrated with other SFDA methods to alleviate forgetting.


Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness

arXiv.org Machine Learning

Previous work shows that adversarially robust generalization requires larger sample complexity, and the same dataset, e.g., CIFAR-10, which enables good standard accuracy may not suffice to train robust models. Since collecting new training data could be costly, we instead focus on inducing locally dense sample distribution, i.e., high sample density in the feature space which could lead to locally sufficient samples for robust learning. We first formally show that the softmax cross-entropy (SCE) loss and its variants induce inappropriate sample density distributions in the feature space, which inspires us to design appropriate training objectives. Specifically, we propose the Max-Mahalanobis center (MMC) loss to create high-density regions for better robustness. It encourages the learned features to gather around the preset class centers with optimal inter-class dispersion. Comparing to the SCE loss and its variants, we empirically demonstrate that applying the MMC loss can significantly improve robustness even under strong adaptive attacks, while keeping state-of-the-art accuracy on clean inputs with little extra computation.


Improving Adversarial Robustness via Promoting Ensemble Diversity

arXiv.org Machine Learning

Though deep neural networks have achieved significant progress on various tasks, often enhanced by model ensemble, existing high-performance models can be vulnerable to adversarial attacks. Many efforts have been devoted to enhancing the robustness of individual networks and then constructing a straightforward ensemble, e.g., by directly averaging the outputs, which ignores the interaction among networks. This paper presents a new method that explores the interaction among individual networks to improve robustness for ensemble models. Technically, we define a new notion of ensemble diversity in the adversarial setting as the diversity among non-maximal predictions of individual members, and present an adaptive diversity promoting (ADP) regularizer to encourage the diversity, which leads to globally better robustness for the ensemble by making adversarial examples difficult to transfer among individual members. Our method is computationally efficient and compatible with the defense methods acting on individual networks. Empirical results on various datasets verify that our method can improve adversarial robustness while maintaining state-of-the-art accuracy on normal examples.


Adversarial Variational Inference and Learning in Markov Random Fields

arXiv.org Machine Learning

Markov random fields (MRFs) find applications in a variety of machine learning areas, while the inference and learning of such models are challenging in general. In this paper, we propose the Adversarial Variational Inference and Learning (AVIL) algorithm to solve the problems with a minimal assumption about the model structure of an MRF. AVIL employs two variational distributions to approximately infer the latent variables and estimate the partition function, respectively. The variational distributions, which are parameterized as neural networks, provide an estimate of the negative log likelihood of the MRF. On one hand, the estimate is in an intuitive form of approximate contrastive free energy. On the other hand, the estimate is a minimax optimization problem, which is solved by stochastic gradient descent in an alternating manner. We apply AVIL to various undirected generative models in a fully black-box manner and obtain better results than existing competitors on several real datasets.