Goto

Collaborating Authors

 Du, Chao


Understanding R1-Zero-Like Training: A Critical Perspective

arXiv.org Artificial Intelligence

DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.


LongSpec: Long-Context Speculative Decoding with Efficient Drafting and Verification

arXiv.org Artificial Intelligence

Speculative decoding has become a promising technique to mitigate the high inference latency of autoregressive decoding in Large Language Models (LLMs). Despite its promise, the effective application of speculative decoding in LLMs still confronts three key challenges: the increasing memory demands of the draft model, the distribution shift between the short-training corpora and long-context inference, and inefficiencies in attention implementation. In this work, we enhance the performance of speculative decoding in long-context settings by addressing these challenges. First, we propose a memory-efficient draft model with a constant-sized Key-Value (KV) cache. Second, we introduce novel position indices for short-training data, enabling seamless adaptation from short-context training to long-context inference. Finally, we present an innovative attention aggregation method that combines fast implementations for prefix computation with standard attention for tree mask handling, effectively resolving the latency and memory inefficiencies of tree decoding. Our approach achieves strong results on various long-context tasks, including repository-level code completion, long-context summarization, and o1-like long reasoning tasks, demonstrating significant improvements in latency reduction. The code is available at https://github.com/sail-sg/LongSpec.


Sailor2: Sailing in South-East Asia with Inclusive Multilingual LLMs

arXiv.org Artificial Intelligence

Sailor2 is a family of cutting-edge multilingual language models for South-East Asian (SEA) languages, available in 1B, 8B, and 20B sizes to suit diverse applications. Building on Qwen2.5, Sailor2 undergoes continuous pre-training on 500B tokens (400B SEA-specific and 100B replay tokens) to support 13 SEA languages while retaining proficiency in Chinese and English. Sailor2-20B model achieves a 50-50 win rate against GPT-4o across SEA languages. We also deliver a comprehensive cookbook on how to develop the multilingual model in an efficient manner, including five key aspects: data curation, pre-training, post-training, model customization and evaluation. We hope that Sailor2 model (Apache 2.0 license) will drive language development in the SEA region, and Sailor2 cookbook will inspire researchers to build more inclusive LLMs for other under-served languages.


Improving Your Model Ranking on Chatbot Arena by Vote Rigging

arXiv.org Artificial Intelligence

Chatbot Arena is a popular platform for evaluating LLMs by pairwise battles, where users vote for their preferred response from two randomly sampled anonymous models. While Chatbot Arena is widely regarded as a reliable LLM ranking leaderboard, we show that crowdsourced voting can be rigged to improve (or decrease) the ranking of a target model $m_{t}$. We first introduce a straightforward target-only rigging strategy that focuses on new battles involving $m_{t}$, identifying it via watermarking or a binary classifier, and exclusively voting for $m_{t}$ wins. However, this strategy is practically inefficient because there are over $190$ models on Chatbot Arena and on average only about $1\%$ of new battles will involve $m_{t}$. To overcome this, we propose omnipresent rigging strategies, exploiting the Elo rating mechanism of Chatbot Arena that any new vote on a battle can influence the ranking of the target model $m_{t}$, even if $m_{t}$ is not directly involved in the battle. We conduct experiments on around $1.7$ million historical votes from the Chatbot Arena Notebook, showing that omnipresent rigging strategies can improve model rankings by rigging only hundreds of new votes. While we have evaluated several defense mechanisms, our findings highlight the importance of continued efforts to prevent vote rigging. Our code is available at https://github.com/sail-sg/Rigging-ChatbotArena.


Human-like conceptual representations emerge from language prediction

arXiv.org Artificial Intelligence

Recent advances in large language models (LLMs) provide a new opportunity to address the long-standing question of how concepts are represented and organized in the mind, which is central to unravelling the nature of human cognition. Here, we reframed the classic reverse dictionary task to simulate human concept inference in context and investigated the emergence of human-like conceptual representations within LLMs. We found that LLMs were able to infer concepts from definitional descriptions and construct representation spaces that converge towards a shared, context-independent structure. These representations effectively predicted human behavioural judgments and aligned well with neural activity patterns in the human brain, offering evidence for biological plausibility. These findings demonstrate that human-like conceptual representations and organization can naturally emerge from language prediction, even without real-world grounding. Our work supports the view that LLMs serve as valuable tools for understanding complex human cognition and paves the way for better alignment between artificial and human intelligence.


Scaling up Masked Diffusion Models on Text

arXiv.org Artificial Intelligence

Masked diffusion models (MDMs) have shown promise in language modeling, yet their scalability and effectiveness in core language tasks, such as text generation and language understanding, remain underexplored. This paper establishes the first scaling law for MDMs, demonstrating a scaling rate comparable to autoregressive models (ARMs) and a relatively small compute gap. Motivated by their scalability, we train a family of MDMs with up to 1.1 billion (B) parameters to systematically evaluate their performance against ARMs of comparable or larger sizes. Fully leveraging the probabilistic formulation of MDMs, we propose a simple yet effective unsupervised classifier-free guidance that effectively exploits large-scale unpaired data, boosting performance for conditional inference. In language understanding, the 1.1B MDM outperforms the 1.1B TinyLlama model trained on the same data across four of eight zero-shot benchmarks. Notably, it achieves competitive math reasoning ability with the 7B Llama-2 model on the GSM8K dataset. In text generation, MDMs provide a flexible trade-off compared to ARMs utilizing KV-cache: MDMs match the performance of ARMs while being 1.4 times faster or achieving higher quality than ARMs at a higher computational cost. Moreover, MDMs address challenging tasks for ARMs by effectively handling bidirectional reasoning and adapting to temporal shifts in data. Notably, a 1.1B MDM breaks the reverse curse encountered by much larger ARMs with significantly more data and computation, such as 13B Llama-2 and 175B GPT-3. Our code is available at https://github.com/ML-GSAI/SMDM. Figure 1: IsoFLOP curves plot optimal model sizes under fixed computation budgets. The optimal MDMs validation loss exhibits power-law scaling, decreasing at a rate comparable to that of ARMs. Work done during Shen Nie's internship at Sea AI Lab. Autoregressive models (ARMs) have long been regarded as the gold standard in probabilistic language modeling. However, ARMs exhibit inherent limitations, particularly in reasoning tasks that require bidirectional context understanding or handling temporal shifts in data. These shortcomings, widely recognized as the reverse curse (Berglund et al., 2023) and temporal quality degradation (Vela et al., 2022), significantly hinder their applicability in complex language modeling scenarios.


When Precision Meets Position: BFloat16 Breaks Down RoPE in Long-Context Training

arXiv.org Artificial Intelligence

Extending context window sizes allows large language models (LLMs) to process longer sequences and handle more complex tasks. Rotary Positional Embedding (RoPE) has become the de facto standard due to its relative positional encoding properties that benefit long-context training. However, we observe that using RoPE with BFloat16 format results in numerical issues, causing it to deviate from its intended relative positional encoding, especially in long-context scenarios. This issue arises from BFloat16's limited precision and accumulates as context length increases, with the first token contributing significantly to this problem. To address this, we develop AnchorAttention, a plug-and-play attention method that alleviates numerical issues caused by BFloat16, improves long-context capabilities, and speeds up training. AnchorAttention reduces unnecessary attention computations, maintains semantic coherence, and boosts computational efficiency by treating the first token as a shared anchor with a consistent position ID, making it visible to all documents within the training context. Experiments on three types of LLMs demonstrate that AnchorAttention significantly improves long-context performance and reduces training time by over 50\% compared to standard full attention mechanisms, while preserving the original LLM's capabilities on general tasks. Our code is available at https://github.com/haonan3/AnchorContext.


A Closer Look at Machine Unlearning for Large Language Models

arXiv.org Artificial Intelligence

Due to the high cost of retraining from scratch, researchers attempt to employ machine unlearning to remove specific content from LLMs while preserving the overall performance. In this paper, we discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches. To address the issue of inadequate evaluation of model outputs after unlearning, we introduce three additional metrics to evaluate token diversity, sentence semantics, and factual correctness. We then categorize unlearning methods into untargeted and targeted, and discuss their issues respectively. Specifically, the behavior that untargeted unlearning attempts to approximate is unpredictable and may involve hallucinations, and existing regularization is insufficient for targeted unlearning. To alleviate these issues, we propose using the objective of maximizing entropy (ME) for untargeted unlearning and incorporate answer preservation (AP) loss as regularization for targeted unlearning. Experimental results across three scenarios, i.e., fictitious unlearning, continual unlearning, and real-world unlearning, demonstrate the effectiveness of our approaches. In recent years, large language models (LLMs) have undergone rapid development, demonstrating impressive capabilities across a wide range of applications, from natural language processing to complex problem-solving. These concerns are particularly relevant within legal and regulatory frameworks, such as the Right to be Forgotten (Dang, 2021), which aims to empower individuals to have unauthorized data erased from digital records. Addressing these issues is crucial for ensuring the responsible deployment of LLMs in real-world applications. Due to the high cost of retraining LLMs, researchers have explored machine unlearning techniques, namely LLM unlearning (Cao & Yang, 2015; Bourtoule et al., 2021; Yao et al., 2023). The typical paradigm involves fine-tuning the target LLM on a specified set, known as the forget set, to obtain an unlearned model. As described in (Maini et al., 2024; Jin et al., 2024), the unlearned model should meet two primary goals: 1) it should not reveal any information contained in the forget set, and 2) it should maintain performance on the neighbor set, which has a distribution similar to the forget set but is not the target of unlearning, as well as on other tasks with general knowledge. While the first goal is generally easier to achieve, the main challenge lies in meeting the second goal (Liu et al., 2024b; Maini et al., 2024; Zhang et al., 2024a; Ji et al., 2024; Shi et al., 2024a; Wang et al., 2024c). In this paper, we have a closer look at machine unlearning for LLMs. We note that most prior studies (Maini et al., 2024; Ji et al., 2024; Jia et al., 2024; Jin et al., 2024; Shi et al., 2024a) primarily rely on ROUGE (Lin, 2004) as the sole metric for evaluating the output of unlearned models.


Sample-Efficient Alignment for LLMs

arXiv.org Artificial Intelligence

We study methods for efficiently aligning large language models (LLMs) with human preferences given budgeted online feedback. We first formulate the LLM alignment problem in the frame of contextual dueling bandits. This formulation, subsuming recent paradigms such as online RLHF and online DPO, inherently quests for sample-efficient algorithms that incorporate online active exploration. Leveraging insights from bandit theory, we introduce a unified algorithm based on Thompson sampling and highlight its applications in two distinct LLM alignment scenarios. The practical agent that efficiently implements this algorithm, named SEA (Sample-Efficient Alignment), is empirically validated through extensive experiments across three model scales (1B, 2.8B, 6.9B) and three preference learning algorithms (DPO, IPO, SLiC). The results demonstrate that SEA achieves highly sample-efficient alignment with oracle's preferences, outperforming recent active exploration methods for LLMs. Additionally, we release the implementation of SEA together with an efficient codebase designed for online alignment of LLMs, aiming to accelerate future research in this field.


SimLayerKV: A Simple Framework for Layer-Level KV Cache Reduction

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have extended their capabilities to handle long contexts. However, increasing the number of model layers and the length of input sequences significantly escalates the memory required to store key-value (KV) cache, posing challenges for efficient inference. To mitigate this issue, we present SimLayerKV, a simple yet effective method that reduces inter-layer KV cache redundancies by selectively dropping cache in identified lazy layers. Our approach is based on the observation that certain layers in long-context LLMs exhibit "lazy" behavior, contributing less to modeling long-range dependencies compared to non-lazy layers. By analyzing attention weight patterns, we find that the behavior of these lazy layers is consistent across tokens during generation for a given input. This insight motivates our SimLayerKV, which identifies lazy layers and reduces their KV cache accordingly. SimLayerKV is training-free, generalizable, and can be implemented with only seven lines of code. We conduct extensive experiments on three representative LLMs, e.g., LLaMA2-7B, LLaMA3-8B, and Mistral-7B across 16 tasks from the LongBench benchmark. The results demonstrate that SimLayerKV achieves a KV cache compression ratio of 5$\times$ with only a 1.2% performance drop when combined with 4-bit quantization. Our code is available at https://github.com/sail-sg/SimLayerKV.