Draicchio, Francesco
iCub3 Avatar System: Enabling Remote Fully-Immersive Embodiment of Humanoid Robots
Dafarra, Stefano, Pattacini, Ugo, Romualdi, Giulio, Rapetti, Lorenzo, Grieco, Riccardo, Darvish, Kourosh, Milani, Gianluca, Valli, Enrico, Sorrentino, Ines, Viceconte, Paolo Maria, Scalzo, Alessandro, Traversaro, Silvio, Sartore, Carlotta, Elobaid, Mohamed, Guedelha, Nuno, Herron, Connor, Leonessa, Alexander, Draicchio, Francesco, Metta, Giorgio, Maggiali, Marco, Pucci, Daniele
We present an avatar system designed to facilitate the embodiment of humanoid robots by human operators, validated through iCub3, a humanoid developed at the Istituto Italiano di Tecnologia (IIT). More precisely, the contribution of the paper is twofold: first, we present the humanoid iCub3 as a robotic avatar which integrates the latest significant improvements after about fifteen years of development of the iCub series; second, we present a versatile avatar system enabling humans to embody humanoid robots encompassing aspects such as locomotion, manipulation, voice, and face expressions with comprehensive sensory feedback including visual, auditory, haptic, weight, and touch modalities. We validate the system by implementing several avatar architecture instances, each tailored to specific requirements. First, we evaluated the optimized architecture for verbal, non-verbal, and physical interactions with a remote recipient. This testing involved the operator in Genoa and the avatar in the Biennale di Venezia, Venice - about 290 Km away - thus allowing the operator to visit remotely the Italian art exhibition. Second, we evaluated the optimised architecture for recipient physical collaboration and public engagement on-stage, live, at the We Make Future show, a prominent world digital innovation festival. In this instance, the operator was situated in Genoa while the avatar operates in Rimini - about 300 Km away - interacting with a recipient who entrusted the avatar a payload to carry on stage before an audience of approximately 2000 spectators. Third, we present the architecture implemented by the iCub Team for the ANA Avatar XPrize competition.
Online Action Recognition for Human Risk Prediction with Anticipated Haptic Alert via Wearables
Guo, Cheng, Rapetti, Lorenzo, Darvish, Kourosh, Grieco, Riccardo, Draicchio, Francesco, Pucci, Daniele
This paper proposes a framework that combines online human state estimation, action recognition and motion prediction to enable early assessment and prevention of worker biomechanical risk during lifting tasks. The framework leverages the NIOSH index to perform online risk assessment, thus fitting real-time applications. In particular, the human state is retrieved via inverse kinematics/dynamics algorithms from wearable sensor data. Human action recognition and motion prediction are achieved by implementing an LSTM-based Guided Mixture of Experts architecture, which is trained offline and inferred online. With the recognized actions, a single lifting activity is divided into a series of continuous movements and the Revised NIOSH Lifting Equation can be applied for risk assessment. Moreover, the predicted motions enable anticipation of future risks. A haptic actuator, embedded in the wearable system, can alert the subject of potential risk, acting as an active prevention device. The performance of the proposed framework is validated by executing real lifting tasks, while the subject is equipped with the iFeel wearable system.
Control of a Back-Support Exoskeleton to Assist Carrying Activities
Lazzaroni, Maria, Chini, Giorgia, Draicchio, Francesco, Di Natali, Christian, Caldwell, Darwin G., Ortiz, Jesús
Back-support exoskeletons are commonly used in the workplace to reduce low back pain risk for workers performing demanding activities. However, for the assistance of tasks differing from lifting, back-support exoskeletons potential has not been exploited extensively. This work focuses on the use of an active back-support exoskeleton to assist carrying. Two control strategies are designed that modulate the exoskeleton torques to comply with the task assistance requirements. In particular, two gait phase detection frameworks are exploited to adapt the assistance according to the legs' motion. The two strategies are assessed through an experimental analysis on ten subjects. Carrying task is performed without and with the exoskeleton assistance. Results prove the potential of the presented controls in assisting the task without hindering the gait movement and improving the usability experienced by users. Moreover, the exoskeleton assistance significantly reduces the lumbar load associated with the task, demonstrating its promising use for risk mitigation in the workplace.
A Control Approach for Human-Robot Ergonomic Payload Lifting
Rapetti, Lorenzo, Sartore, Carlotta, Elobaid, Mohamed, Tirupachuri, Yeshasvi, Draicchio, Francesco, Kawakami, Tomohiro, Yoshiike, Takahide, Pucci, Daniele
Collaborative robots can relief human operators from excessive efforts during payload lifting activities. Modelling the human partner allows the design of safe and efficient collaborative strategies. In this paper, we present a control approach for human-robot collaboration based on human monitoring through whole-body wearable sensors, and interaction modelling through coupled rigid-body dynamics. Moreover, a trajectory advancement strategy is proposed, allowing for online adaptation of the robot trajectory depending on the human motion. The resulting framework allows us to perform payload lifting tasks, taking into account the ergonomic requirements of the agents. Validation has been performed in an experimental scenario using the iCub3 humanoid robot and a human subject sensorized with the iFeel wearable system.