Goto

Collaborating Authors

 Dragan, Anca


Temporal Representation Alignment: Successor Features Enable Emergent Compositionality in Robot Instruction Following

arXiv.org Artificial Intelligence

Effective task representations should facilitate compositionality, such that after learning a variety of basic tasks, an agent can perform compound tasks consisting of multiple steps simply by composing the representations of the constituent steps together. While this is conceptually simple and appealing, it is not clear how to automatically learn representations that enable this sort of compositionality. We show that learning to associate the representations of current and future states with a temporal alignment loss can improve compositional generalization, even in the absence of any explicit subtask planning or reinforcement learning. We evaluate our approach across diverse robotic manipulation tasks as well as in simulation, showing substantial improvements for tasks specified with either language or goal images.


Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning

arXiv.org Artificial Intelligence

Value-based reinforcement learning (RL) can in principle learn effective policies for a wide range of multi-turn problems, from games to dialogue to robotic control, including via offline RL from static previously collected datasets. However, despite the widespread use of policy gradient methods to train large language models for single turn tasks (e.g., question answering), value-based methods for multi-turn RL in an off-policy or offline setting have proven particularly challenging to scale to the setting of large language models. This setting requires effectively leveraging pretraining, scaling to large architectures with billions of parameters, and training on large datasets, all of which represent major challenges for current value-based RL methods. In this work, we propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning (SFT) problem where the probabilities of tokens directly translate to Q-values. In this way we obtain an algorithm that smoothly transitions from maximizing the likelihood of the data during pretraining to learning a near-optimal Q-function during finetuning. Our algorithm has strong theoretical foundations, enjoying performance bounds similar to state-of-the-art Q-learning methods, while in practice utilizing an objective that closely resembles SFT. Because of this, our approach can enjoy the full benefits of the pretraining of language models, without the need to reinitialize any weights before RL finetuning, and without the need to initialize new heads for predicting values or advantages. Empirically, we evaluate our method on both pretrained LLMs and VLMs, on a variety of tasks including both natural language dialogue and robotic manipulation and navigation from images.


On Targeted Manipulation and Deception when Optimizing LLMs for User Feedback

arXiv.org Artificial Intelligence

As LLMs become more widely deployed, there is increasing interest in directly optimizing for feedback from end users (e.g. thumbs up) in addition to feedback from paid annotators. However, training to maximize human feedback creates a perverse incentive structure for the AI to resort to manipulative or deceptive tactics to obtain positive feedback from users who are vulnerable to such strategies. We study this phenomenon by training LLMs with Reinforcement Learning with simulated user feedback in environments of practical LLM usage. In our settings, we find that: 1) Extreme forms of "feedback gaming" such as manipulation and deception are learned reliably; 2) Even if only 2% of users are vulnerable to manipulative strategies, LLMs learn to identify and target them while behaving appropriately with other users, making such behaviors harder to detect; 3) To mitigate this issue, it may seem promising to leverage continued safety training or LLM-as-judges during training to filter problematic outputs. Instead, we found that while such approaches help in some of our settings, they backfire in others, sometimes even leading to subtler manipulative behaviors. We hope our results can serve as a case study which highlights the risks of using gameable feedback sources -- such as user feedback -- as a target for RL.


Learning to Assist Humans without Inferring Rewards

arXiv.org Artificial Intelligence

Assistive agents should make humans' lives easier. Classically, such assistance is studied through the lens of inverse reinforcement learning, where an assistive agent (e.g., a chatbot, a robot) infers a human's intention and then selects actions to help the human reach that goal. This approach requires inferring intentions, which can be difficult in high-dimensional settings. We build upon prior work that studies assistance through the lens of empowerment: an assistive agent aims to maximize the influence of the human's actions such that they exert a greater control over the environmental outcomes and can solve tasks in fewer steps. We lift the major limitation of prior work in this area -- scalability to high-dimensional settings -- with contrastive successor representations. We formally prove that these representations estimate a similar notion of empowerment to that studied by prior work and provide a ready-made mechanism for optimizing it. Empirically, our proposed method outperforms prior methods on synthetic benchmarks, and scales to Overcooked, a cooperative game setting. Theoretically, our work connects ideas from information theory, neuroscience, and reinforcement learning, and charts a path for representations to play a critical role in solving assistive problems.


Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations

arXiv.org Artificial Intelligence

Recent progress on large language models (LLMs) has enabled dialogue agents to generate highly naturalistic and plausible text. However, current LLM language generation focuses on responding accurately to questions and requests with a single effective response. In reality, many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion. Accounting for how an agent can effectively steer a conversation is a crucial ability in many dialogue tasks, from healthcare to preference elicitation. Existing methods for fine-tuning dialogue agents to accomplish such tasks would rely on curating some amount of expert data. However, doing so often requires understanding the underlying cognitive processes of the conversational partner, which is a skill neither humans nor LLMs trained on human data can reliably do. Our key insight is that while LLMs may not be adept at identifying effective strategies for steering conversations a priori, or in the middle of an ongoing conversation, they can do so post-hoc, or in hindsight, after seeing how their conversational partner responds. We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations. We apply our approach to two domains that require understanding human mental state, intelligent interaction, and persuasion: mental health support, and soliciting charitable donations. Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.


Trajectory Improvement and Reward Learning from Comparative Language Feedback

arXiv.org Artificial Intelligence

Learning from human feedback has gained traction in fields like robotics and natural language processing in recent years. While prior works mostly rely on human feedback in the form of comparisons, language is a preferable modality that provides more informative insights into user preferences. In this work, we aim to incorporate comparative language feedback to iteratively improve robot trajectories and to learn reward functions that encode human preferences. To achieve this goal, we learn a shared latent space that integrates trajectory data and language feedback, and subsequently leverage the learned latent space to improve trajectories and learn human preferences. To the best of our knowledge, we are the first to incorporate comparative language feedback into reward learning. Our simulation experiments demonstrate the effectiveness of the learned latent space and the success of our learning algorithms. We also conduct human subject studies that show our reward learning algorithm achieves a 23.9% higher subjective score on average and is 11.3% more time-efficient compared to preference-based reward learning, underscoring the superior performance of our method. Our website is at https://liralab.usc.edu/comparative-language-feedback/


Adversaries Can Misuse Combinations of Safe Models

arXiv.org Artificial Intelligence

Developers try to evaluate whether an AI system can be misused by adversaries before releasing it; for example, they might test whether a model enables cyberoffense, user manipulation, or bioterrorism. In this work, we show that individually testing models for misuse is inadequate; adversaries can misuse combinations of models even when each individual model is safe. The adversary accomplishes this by first decomposing tasks into subtasks, then solving each subtask with the best-suited model. For example, an adversary might solve challenging-but-benign subtasks with an aligned frontier model, and easy-but-malicious subtasks with a weaker misaligned model. We study two decomposition methods: manual decomposition where a human identifies a natural decomposition of a task, and automated decomposition where a weak model generates benign tasks for a frontier model to solve, then uses the solutions in-context to solve the original task. Using these decompositions, we empirically show that adversaries can create vulnerable code, explicit images, python scripts for hacking, and manipulative tweets at much higher rates with combinations of models than either individual model. Our work suggests that even perfectly-aligned frontier systems can enable misuse without ever producing malicious outputs, and that red-teaming efforts should extend beyond single models in isolation.


Learning Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for Decision-Making

arXiv.org Artificial Intelligence

Temporal distances lie at the heart of many algorithms for planning, control, and reinforcement learning that involve reaching goals, allowing one to estimate the transit time between two states. However, prior attempts to define such temporal distances in stochastic settings have been stymied by an important limitation: these prior approaches do not satisfy the triangle inequality. This is not merely a definitional concern, but translates to an inability to generalize and find shortest paths. In this paper, we build on prior work in contrastive learning and quasimetrics to show how successor features learned by contrastive learning (after a change of variables) form a temporal distance that does satisfy the triangle inequality, even in stochastic settings. Importantly, this temporal distance is computationally efficient to estimate, even in high-dimensional and stochastic settings. Experiments in controlled settings and benchmark suites demonstrate that an RL algorithm based on these new temporal distances exhibits combinatorial generalization (i.e., "stitching") and can sometimes learn more quickly than prior methods, including those based on quasimetrics.


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Coprocessor Actor Critic: A Model-Based Reinforcement Learning Approach For Adaptive Brain Stimulation

arXiv.org Artificial Intelligence

Adaptive brain stimulation can treat neurological conditions such as Parkinson's disease and post-stroke motor deficits by influencing abnormal neural activity. Because of patient heterogeneity, each patient requires a unique stimulation policy to achieve optimal neural responses. Model-free reinforcement learning (MFRL) holds promise in learning effective policies for a variety of similar control tasks, but is limited in domains like brain stimulation by a need for numerous costly environment interactions. In this work we introduce Coprocessor Actor Critic, a novel, model-based reinforcement learning (MBRL) approach for learning neural coprocessor policies for brain stimulation. Our key insight is that coprocessor policy learning is a combination of learning how to act optimally in the world and learning how to induce optimal actions in the world through stimulation of an injured brain. We show that our approach overcomes the limitations of traditional MFRL methods in terms of sample efficiency and task success and outperforms baseline MBRL approaches in a neurologically realistic model of an injured brain.