Doulamis, Anastasios
Uncertainty estimation in satellite precipitation spatial prediction by combining distributional regression algorithms
Papacharalampous, Georgia, Tyralis, Hristos, Doulamis, Nikolaos, Doulamis, Anastasios
To facilitate effective decision-making, gridded satellite precipitation products should include uncertainty estimates. Machine learning has been proposed for issuing such estimates. However, most existing algorithms for this purpose rely on quantile regression. Distributional regression offers distinct advantages over quantile regression, including the ability to model intermittency as well as a stronger ability to extrapolate beyond the training data, which is critical for predicting extreme precipitation. In this work, we introduce the concept of distributional regression for the engineering task of creating precipitation datasets through data merging. Building upon this concept, we propose new ensemble learning methods that can be valuable not only for spatial prediction but also for prediction problems in general. These methods exploit conditional zero-adjusted probability distributions estimated with generalized additive models for location, scale, and shape (GAMLSS), spline-based GAMLSS and distributional regression forests as well as their ensembles (stacking based on quantile regression, and equal-weight averaging). To identify the most effective methods for our specific problem, we compared them to benchmarks using a large, multi-source precipitation dataset. Stacking emerged as the most successful strategy. Three specific stacking methods achieved the best performance based on the quantile scoring rule, although the ranking of these methods varied across quantile levels. This suggests that a task-specific combination of multiple algorithms could yield significant benefits.
Multi-scale Intervention Planning based on Generative Design
Kavouras, Ioannis, Rallis, Ioannis, Sardis, Emmanuel, Protopapadakis, Eftychios, Doulamis, Anastasios, Doulamis, Nikolaos
The scarcity of green spaces, in urban environments, consists a critical challenge. There are multiple adverse effects, impacting the health and well-being of the citizens. Small scale interventions, e.g. pocket parks, is a viable solution, but comes with multiple constraints, involving the design and implementation over a specific area. In this study, we harness the capabilities of generative AI for multi-scale intervention planning, focusing on nature based solutions. By leveraging image-to-image and image inpainting algorithms, we propose a methodology to address the green space deficit in urban areas. Focusing on two alleys in Thessaloniki, where greenery is lacking, we demonstrate the efficacy of our approach in visualizing NBS interventions. Our findings underscore the transformative potential of emerging technologies in shaping the future of urban intervention planning processes.
Uncertainty estimation in spatial interpolation of satellite precipitation with ensemble learning
Papacharalampous, Georgia, Tyralis, Hristos, Doulamis, Nikolaos, Doulamis, Anastasios
Predictions in the form of probability distributions are crucial for decision-making. Quantile regression enables this within spatial interpolation settings for merging remote sensing and gauge precipitation data. However, ensemble learning of quantile regression algorithms remains unexplored in this context. Here, we address this gap by introducing nine quantile-based ensemble learners and applying them to large precipitation datasets. We employed a novel feature engineering strategy, reducing predictors to distance-weighted satellite precipitation at relevant locations, combined with location elevation. Our ensemble learners include six stacking and three simple methods (mean, median, best combiner), combining six individual algorithms: quantile regression (QR), quantile regression forests (QRF), generalized random forests (GRF), gradient boosting machines (GBM), light gradient boosting machines (LightGBM), and quantile regression neural networks (QRNN). These algorithms serve as both base learners and combiners within different stacking methods. We evaluated performance against QR using quantile scoring functions in a large dataset comprising 15 years of monthly gauge-measured and satellite precipitation in contiguous US (CONUS). Stacking with QR and QRNN yielded the best results across quantile levels of interest (0.025, 0.050, 0.075, 0.100, 0.200, 0.300, 0.400, 0.500, 0.600, 0.700, 0.800, 0.900, 0.925, 0.950, 0.975), surpassing the reference method by 3.91% to 8.95%. This demonstrates the potential of stacking to improve probabilistic predictions in spatial interpolation and beyond.
Machine learning for uncertainty estimation in fusing precipitation observations from satellites and ground-based gauges
Papacharalampous, Georgia, Tyralis, Hristos, Doulamis, Nikolaos, Doulamis, Anastasios
To form precipitation datasets that are accurate and, at the same time, have high spatial densities, data from satellites and gauges are often merged in the literature. However, uncertainty estimates for the data acquired in this manner are scarcely provided, although the importance of uncertainty quantification in predictive modelling is widely recognized. Furthermore, the benefits that machine learning can bring to the task of providing such estimates have not been broadly realized and properly explored through benchmark experiments. The present study aims at filling in this specific gap by conducting the first benchmark tests on the topic. On a large dataset that comprises 15-year-long monthly data spanning across the contiguous United States, we extensively compared six learners that are, by their construction, appropriate for predictive uncertainty quantification. These are the quantile regression (QR), quantile regression forests (QRF), generalized random forests (GRF), gradient boosting machines (GBM), light gradient boosting machines (LightGBM) and quantile regression neural networks (QRNN). The comparison referred to the competence of the learners in issuing predictive quantiles at nine levels that facilitate a good approximation of the entire predictive probability distribution, and was primarily based on the quantile and continuous ranked probability skill scores. Three types of predictor variables (i.e., satellite precipitation variables, distances between a point of interest and satellite grid points, and elevation at a point of interest) were used in the comparison and were additionally compared with each other. This additional comparison was based on the explainable machine learning concept of feature importance. The results suggest that the order from the best to the worst of the learners for the task investigated is the following: LightGBM, QRF, GRF, GBM, QRNN and QR...
Ensemble learning for blending gridded satellite and gauge-measured precipitation data
Papacharalampous, Georgia, Tyralis, Hristos, Doulamis, Nikolaos, Doulamis, Anastasios
Regression algorithms are regularly used for improving the accuracy of satellite precipitation products. In this context, satellite precipitation and topography data are the predictor variables, and gauged-measured precipitation data are the dependent variables. Alongside this, it is increasingly recognised in many fields that combinations of algorithms through ensemble learning can lead to substantial predictive performance improvements. Still, a sufficient number of ensemble learners for improving the accuracy of satellite precipitation products and their large-scale comparison are currently missing from the literature. In this study, we work towards filling in this specific gap by proposing 11 new ensemble learners in the field and by extensively comparing them. We apply the ensemble learners to monthly data from the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and IMERG (Integrated Multi-satellitE Retrievals for GPM) gridded datasets that span over a 15-year period and over the entire the contiguous United States (CONUS). We also use gauge-measured precipitation data from the Global Historical Climatology Network monthly database, version 2 (GHCNm). The ensemble learners combine the predictions of six machine learning regression algorithms (base learners), namely the multivariate adaptive regression splines (MARS), multivariate adaptive polynomial splines (poly-MARS), random forests (RF), gradient boosting machines (GBM), extreme gradient boosting (XGBoost) and Bayesian regularized neural networks (BRNN), and each of them is based on a different combiner. The combiners include the equal-weight combiner, the median combiner, two best learners and seven variants of a sophisticated stacking method. The latter stacks a regression algorithm on top of the base learners to combine their independent predictions...
Merging satellite and gauge-measured precipitation using LightGBM with an emphasis on extreme quantiles
Tyralis, Hristos, Papacharalampous, Georgia, Doulamis, Nikolaos, Doulamis, Anastasios
Knowing the actual precipitation in space and time is critical in hydrological modelling applications, yet the spatial coverage with rain gauge stations is limited due to economic constraints. Gridded satellite precipitation datasets offer an alternative option for estimating the actual precipitation by covering uniformly large areas, albeit related estimates are not accurate. To improve precipitation estimates, machine learning is applied to merge rain gauge-based measurements and gridded satellite precipitation products. In this context, observed precipitation plays the role of the dependent variable, while satellite data play the role of predictor variables. Random forests is the dominant machine learning algorithm in relevant applications. In those spatial predictions settings, point predictions (mostly the mean or the median of the conditional distribution) of the dependent variable are issued. The aim of the manuscript is to solve the problem of probabilistic prediction of precipitation with an emphasis on extreme quantiles in spatial interpolation settings. Here we propose, issuing probabilistic spatial predictions of precipitation using Light Gradient Boosting Machine (LightGBM). LightGBM is a boosting algorithm, highlighted by prize-winning entries in prediction and forecasting competitions. To assess LightGBM, we contribute a large-scale application that includes merging daily precipitation measurements in contiguous US with PERSIANN and GPM-IMERG satellite precipitation data. We focus on extreme quantiles of the probability distribution of the dependent variable, where LightGBM outperforms quantile regression forests (QRF, a variant of random forests) in terms of quantile score at extreme quantiles. Our study offers understanding of probabilistic predictions in spatial settings using machine learning.
Comparison of tree-based ensemble algorithms for merging satellite and earth-observed precipitation data at the daily time scale
Papacharalampous, Georgia, Tyralis, Hristos, Doulamis, Anastasios, Doulamis, Nikolaos
Merging satellite products and ground-based measurements is often required for obtaining precipitation datasets that simultaneously cover large regions with high density and are more accurate than pure satellite precipitation products. Machine and statistical learning regression algorithms are regularly utilized in this endeavour. At the same time, tree-based ensemble algorithms are adopted in various fields for solving regression problems with high accuracy and low computational cost. Still, information on which tree-based ensemble algorithm to select for correcting satellite precipitation products for the contiguous United States (US) at the daily time scale is missing from the literature. In this study, we worked towards filling this methodological gap by conducting an extensive comparison between three algorithms of the category of interest, specifically between random forests, gradient boosting machines (gbm) and extreme gradient boosting (XGBoost). We used daily data from the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and the IMERG (Integrated Multi-satellitE Retrievals for GPM) gridded datasets. We also used earth-observed precipitation data from the Global Historical Climatology Network daily (GHCNd) database. The experiments referred to the entire contiguous US and additionally included the application of the linear regression algorithm for benchmarking purposes. The results suggest that XGBoost is the best-performing tree-based ensemble algorithm among those compared...
Comparison of machine learning algorithms for merging gridded satellite and earth-observed precipitation data
Papacharalampous, Georgia, Tyralis, Hristos, Doulamis, Anastasios, Doulamis, Nikolaos
Gridded satellite precipitation datasets are useful in hydrological applications as they cover large regions with high density. However, they are not accurate in the sense that they do not agree with ground-based measurements. An established means for improving their accuracy is to correct them by adopting machine learning algorithms. This correction takes the form of a regression problem, in which the ground-based measurements have the role of the dependent variable and the satellite data are the predictor variables, together with topography factors (e.g., elevation). Most studies of this kind involve a limited number of machine learning algorithms, and are conducted for a small region and for a limited time period. Thus, the results obtained through them are of local importance and do not provide more general guidance and best practices. To provide results that are generalizable and to contribute to the delivery of best practices, we here compare eight state-of-the-art machine learning algorithms in correcting satellite precipitation data for the entire contiguous United States and for a 15-year period. We use monthly data from the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) gridded dataset, together with monthly earth-observed precipitation data from the Global Historical Climatology Network monthly database, version 2 (GHCNm). The results suggest that extreme gradient boosting (XGBoost) and random forests are the most accurate in terms of the squared error scoring function. The remaining algorithms can be ordered as follows from the best to the worst: Bayesian regularized feed-forward neural networks, multivariate adaptive polynomial splines (poly-MARS), gradient boosting machines (gbm), multivariate adaptive regression splines (MARS), feed-forward neural networks, linear regression.
A Few-Shot Attention Recurrent Residual U-Net for Crack Segmentation
Katsamenis, Iason, Protopapadakis, Eftychios, Bakalos, Nikolaos, Doulamis, Anastasios, Doulamis, Nikolaos, Voulodimos, Athanasios
Recent studies indicate that deep learning plays a crucial role in the automated visual inspection of road infrastructures. However, current learning schemes are static, implying no dynamic adaptation to users' feedback. To address this drawback, we present a few-shot learning paradigm for the automated segmentation of road cracks, which is based on a U-Net architecture with recurrent residual and attention modules (R2AU-Net). The retraining strategy dynamically fine-tunes the weights of the U-Net as a few new rectified samples are being fed into the classifier. Extensive experiments show that the proposed few-shot R2AU-Net framework outperforms other state-of-the-art networks in terms of Dice and IoU metrics, on a new dataset, named CrackMap, which is made publicly available at https://github.com/ikatsamenis/CrackMap.
Solar Power driven EV Charging Optimization with Deep Reinforcement Learning
Sykiotis, Stavros, Menos-Aikateriniadis, Christoforos, Doulamis, Anastasios, Doulamis, Nikolaos, Georgilakis, Pavlos S.
Power sector decarbonization plays a vital role in the upcoming energy transition towards a more sustainable future. Decentralized energy resources, such as Electric Vehicles (EV) and solar photovoltaic systems (PV), are continuously integrated in residential power systems, increasing the risk of bottlenecks in power distribution networks. This paper aims to address the challenge of domestic EV charging while prioritizing clean, solar energy consumption. Real Time-of-Use tariffs are treated as a price-based Demand Response (DR) mechanism that can incentivize end-users to optimally shift EV charging load in hours of high solar PV generation with the use of Deep Reinforcement Learning (DRL). Historical measurements from the Pecan Street dataset are analyzed to shape a flexibility potential reward to describe end-user charging preferences. Experimental results show that the proposed DQN EV optimal charging policy is able to reduce electricity bills by an average 11.5\% by achieving an average utilization of solar power 88.4