Goto

Collaborating Authors

 Dou, Guangyao


Modality-Aware Neuron Pruning for Unlearning in Multimodal Large Language Models

arXiv.org Artificial Intelligence

Generative models such as Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) trained on massive datasets can lead them to memorize and inadvertently reveal sensitive information, raising ethical and privacy concerns. While some prior works have explored this issue in the context of LLMs, it presents a unique challenge for MLLMs due to the entangled nature of knowledge across modalities, making comprehensive unlearning more difficult. To address this challenge, we propose Modality Aware Neuron Unlearning (MANU), a novel unlearning framework for MLLMs designed to selectively clip neurons based on their relative importance to the targeted forget data, curated for different modalities. Specifically, MANU consists of two stages: important neuron selection and selective pruning. The first stage identifies and collects the most influential neurons across modalities relative to the targeted forget knowledge, while the second stage is dedicated to pruning those selected neurons. MANU effectively isolates and removes the neurons that contribute most to the forget data within each modality, while preserving the integrity of retained knowledge. Our experiments conducted across various MLLM architectures illustrate that MANU can achieve a more balanced and comprehensive unlearning in each modality without largely affecting the overall model utility.



Protecting Privacy in Multimodal Large Language Models with MLLMU-Bench

arXiv.org Artificial Intelligence

Generative models such as Large Language Models (LLM) and Multimodal Large Language models (MLLMs) trained on massive web corpora can memorize and disclose individuals' confidential and private data, raising legal and ethical concerns. While many previous works have addressed this issue in LLM via machine unlearning, it remains largely unexplored for MLLMs. To tackle this challenge, we introduce Multimodal Large Language Model Unlearning Benchmark (MLLMU-Bench), a novel benchmark aimed at advancing the understanding of multimodal machine unlearning. MLLMU-Bench consists of 500 fictitious profiles and 153 profiles for public celebrities, each profile feature over 14 customized question-answer pairs, evaluated from both multimodal (image+text) and unimodal (text) perspectives. The benchmark is divided into four sets to assess unlearning algorithms in terms of efficacy, generalizability, and model utility. Finally, we provide baseline results using existing generative model unlearning algorithms. Surprisingly, our experiments show that unimodal unlearning algorithms excel in generation and cloze tasks, while multimodal unlearning approaches perform better in classification tasks with multimodal inputs.


Avoiding Copyright Infringement via Machine Unlearning

arXiv.org Artificial Intelligence

This scenario involves unlearning specific books over time, followed by subsequent Large Language Models (LLMs) (Brown et al., unlearning requests. An effective algorithm 2020; Chowdhery et al., 2023; Touvron et al., 2023) should be stable, meaning it should ensure unlearning have made significant progress through pre-training efficacy--removing unwanted knowledge effectively--while on extensive transformer-based architectures and maintaining locality, preserving learning from diverse text data (Ouyang et al., 2022; non-targeted knowledge and the model's reasoning Kojima et al., 2022; Qin et al., 2023; Lewkowycz ability. Few works have studied this setting, et al., 2022; Roziere et al., 2023; Lyu et al., 2023; leaving it unclear if existing methods are suitable.


Towards Safer Large Language Models through Machine Unlearning

arXiv.org Artificial Intelligence

The rapid advancement of Large Language Models (LLMs) has demonstrated their vast potential across various domains, attributed to their extensive pretraining knowledge and exceptional generalizability. However, LLMs often encounter challenges in generating harmful content when faced with problematic prompts. To address this problem, existing work attempted to implement a gradient ascent based approach to prevent LLMs from producing harmful output. While these methods can be effective, they frequently impact the model utility in responding to normal prompts. To address this gap, we introduce Selective Knowledge negation Unlearning (SKU), a novel unlearning framework for LLMs, designed to eliminate harmful knowledge while preserving utility on normal prompts. Specifically, SKU is consisted of two stages: harmful knowledge acquisition stage and knowledge negation stage. The first stage aims to identify and acquire harmful knowledge within the model, whereas the second is dedicated to remove this knowledge. SKU selectively isolates and removes harmful knowledge in model parameters, ensuring the model's performance remains robust on normal prompts. Our experiments conducted across various LLM architectures demonstrate that SKU identifies a good balance point between removing harmful information and preserving utility.


Breaking the Trilemma of Privacy, Utility, Efficiency via Controllable Machine Unlearning

arXiv.org Artificial Intelligence

Machine Unlearning (MU) algorithms have become increasingly critical due to the imperative adherence to data privacy regulations. The primary objective of MU is to erase the influence of specific data samples on a given model without the need to retrain it from scratch. Accordingly, existing methods focus on maximizing user privacy protection. However, there are different degrees of privacy regulations for each real-world web-based application. Exploring the full spectrum of trade-offs between privacy, model utility, and runtime efficiency is critical for practical unlearning scenarios. Furthermore, designing the MU algorithm with simple control of the aforementioned trade-off is desirable but challenging due to the inherent complex interaction. To address the challenges, we present Controllable Machine Unlearning (ConMU), a novel framework designed to facilitate the calibration of MU. The ConMU framework contains three integral modules: an important data selection module that reconciles the runtime efficiency and model generalization, a progressive Gaussian mechanism module that balances privacy and model generalization, and an unlearning proxy that controls the trade-offs between privacy and runtime efficiency. Comprehensive experiments on various benchmark datasets have demonstrated the robust adaptability of our control mechanism and its superiority over established unlearning methods. ConMU explores the full spectrum of the Privacy-Utility-Efficiency trade-off and allows practitioners to account for different real-world regulations. Source code available at: https://github.com/guangyaodou/ConMU.


Time Majority Voting, a PC-based EEG Classifier for Non-expert Users

arXiv.org Artificial Intelligence

Using Machine Learning and Deep Learning to predict cognitive tasks from electroencephalography (EEG) signals is a rapidly advancing field in Brain-Computer Interfaces (BCI). In contrast to the fields of computer vision and natural language processing, the data amount of these trials is still rather tiny. Developing a PC-based machine learning technique to increase the participation of non-expert end-users could help solve this data collection issue. We created a novel algorithm for machine learning called Time Majority Voting (TMV). In our experiment, TMV performed better than cutting-edge algorithms. It can operate efficiently on personal computers for classification tasks involving the BCI. These interpretable data also assisted end-users and researchers in comprehending EEG tests better.