Dong, Zhen
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
Sun, Yingying, A, Jun, Liu, Zhiwei, Sun, Rui, Qian, Liujia, Payne, Samuel H., Bittremieux, Wout, Ralser, Markus, Li, Chen, Chen, Yi, Dong, Zhen, Perez-Riverol, Yasset, Khan, Asif, Sander, Chris, Aebersold, Ruedi, Vizcaíno, Juan Antonio, Krieger, Jonathan R, Yao, Jianhua, Wen, Han, Zhang, Linfeng, Zhu, Yunping, Xuan, Yue, Sun, Benjamin Boyang, Qiao, Liang, Hermjakob, Henning, Tang, Haixu, Gao, Huanhuan, Deng, Yamin, Zhong, Qing, Chang, Cheng, Bandeira, Nuno, Li, Ming, E, Weinan, Sun, Siqi, Yang, Yuedong, Omenn, Gilbert S., Zhang, Yue, Xu, Ping, Fu, Yan, Liu, Xiaowen, Overall, Christopher M., Wang, Yu, Deutsch, Eric W., Chen, Luonan, Cox, Jürgen, Demichev, Vadim, He, Fuchu, Huang, Jiaxing, Jin, Huilin, Liu, Chao, Li, Nan, Luan, Zhongzhi, Song, Jiangning, Yu, Kaicheng, Wan, Wanggen, Wang, Tai, Zhang, Kang, Zhang, Le, Bell, Peter A., Mann, Matthias, Zhang, Bing, Guo, Tiannan
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI techniques, are unlocking new challenges and opportunities in biological discovery. Here, we highlight key areas where AI is driving innovation, from data analysis to new biological insights. These include developing an AI-friendly ecosystem for proteomics data generation, sharing, and analysis; improving peptide and protein identification and quantification; characterizing protein-protein interactions and protein complexes; advancing spatial and perturbation proteomics; integrating multi-omics data; and ultimately enabling AI-empowered virtual cells.
ME-CPT: Multi-Task Enhanced Cross-Temporal Point Transformer for Urban 3D Change Detection
Zhang, Luqi, Wang, Haiping, Liu, Chong, Dong, Zhen, Yang, Bisheng
The point clouds collected by the Airborne Laser Scanning (ALS) system provide accurate 3D information of urban land covers. By utilizing multi-temporal ALS point clouds, semantic changes in urban area can be captured, demonstrating significant potential in urban planning, emergency management, and infrastructure maintenance. Existing 3D change detection methods struggle to efficiently extract multi-class semantic information and change features, still facing the following challenges: (1) the difficulty of accurately modeling cross-temporal point clouds spatial relationships for effective change feature extraction; (2) class imbalance of change samples which hinders distinguishability of semantic features; (3) the lack of real-world datasets for 3D semantic change detection. To resolve these challenges, we propose the Multi-task Enhanced Cross-temporal Point Transformer (ME-CPT) network. ME-CPT establishes spatiotemporal correspondences between point cloud across different epochs and employs attention mechanisms to jointly extract semantic change features, facilitating information exchange and change comparison. Additionally, we incorporate a semantic segmentation task and through the multi-task training strategy, further enhance the distinguishability of semantic features, reducing the impact of class imbalance in change types. Moreover, we release a 22.5 $km^2$ 3D semantic change detection dataset, offering diverse scenes for comprehensive evaluation. Experiments on multiple datasets show that the proposed MT-CPT achieves superior performance compared to existing state-of-the-art methods. The source code and dataset will be released upon acceptance at \url{https://github.com/zhangluqi0209/ME-CPT}.
Diffusion as Shader: 3D-aware Video Diffusion for Versatile Video Generation Control
Gu, Zekai, Yan, Rui, Lu, Jiahao, Li, Peng, Dou, Zhiyang, Si, Chenyang, Dong, Zhen, Liu, Qifeng, Lin, Cheng, Liu, Ziwei, Wang, Wenping, Liu, Yuan
Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse control demands. In this paper, we introduce Diffusion as Shader (DaS), a novel approach that supports multiple video control tasks within a unified architecture. Our key insight is that achieving versatile video control necessitates leveraging 3D control signals, as videos are fundamentally 2D renderings of dynamic 3D content. Unlike prior methods limited to 2D control signals, DaS leverages 3D tracking videos as control inputs, making the video diffusion process inherently 3D-aware. This innovation allows DaS to achieve a wide range of video controls by simply manipulating the 3D tracking videos. A further advantage of using 3D tracking videos is their ability to effectively link frames, significantly enhancing the temporal consistency of the generated videos. With just 3 days of fine-tuning on 8 H800 GPUs using less than 10k videos, DaS demonstrates strong control capabilities across diverse tasks, including mesh-to-video generation, camera control, motion transfer, and object manipulation.
SaliencyI2PLoc: saliency-guided image-point cloud localization using contrastive learning
Li, Yuhao, Li, Jianping, Dong, Zhen, Wang, Yuan, Yang, Bisheng
Image to point cloud global localization is crucial for robot navigation in GNSS-denied environments and has become increasingly important for multi-robot map fusion and urban asset management. The modality gap between images and point clouds poses significant challenges for cross-modality fusion. Current cross-modality global localization solutions either require modality unification, which leads to information loss, or rely on engineered training schemes to encode multi-modality features, which often lack feature alignment and relation consistency. To address these limitations, we propose, SaliencyI2PLoc, a novel contrastive learning based architecture that fuses the saliency map into feature aggregation and maintains the feature relation consistency on multi-manifold spaces. To alleviate the pre-process of data mining, the contrastive learning framework is applied which efficiently achieves cross-modality feature mapping. The context saliency-guided local feature aggregation module is designed, which fully leverages the contribution of the stationary information in the scene generating a more representative global feature. Furthermore, to enhance the cross-modality feature alignment during contrastive learning, the consistency of relative relationships between samples in different manifold spaces is also taken into account. Experiments conducted on urban and highway scenario datasets demonstrate the effectiveness and robustness of our method. Specifically, our method achieves a Recall@1 of 78.92% and a Recall@20 of 97.59% on the urban scenario evaluation dataset, showing an improvement of 37.35% and 18.07%, compared to the baseline method. This demonstrates that our architecture efficiently fuses images and point clouds and represents a significant step forward in cross-modality global localization. The project page and code will be released.
Reliable-loc: Robust sequential LiDAR global localization in large-scale street scenes based on verifiable cues
Zou, Xianghong, Li, Jianping, Wu, Weitong, Liang, Fuxun, Yang, Bisheng, Dong, Zhen
Wearable laser scanning (WLS) system has the advantages of flexibility and portability. It can be used for determining the user's path within a prior map, which is a huge demand for applications in pedestrian navigation, collaborative mapping, augmented reality, and emergency rescue. However, existing LiDAR-based global localization methods suffer from insufficient robustness, especially in complex large-scale outdoor scenes with insufficient features and incomplete coverage of the prior map. To address such challenges, we propose LiDAR-based reliable global localization (Reliable-loc) exploiting the verifiable cues in the sequential LiDAR data. First, we propose a Monte Carlo Localization (MCL) based on spatially verifiable cues, utilizing the rich information embedded in local features to adjust the particles' weights hence avoiding the particles converging to erroneous regions. Second, we propose a localization status monitoring mechanism guided by the sequential pose uncertainties and adaptively switching the localization mode using the temporal verifiable cues to avoid the crash of the localization system. To validate the proposed Reliable-loc, comprehensive experiments have been conducted on a large-scale heterogeneous point cloud dataset consisting of high-precision vehicle-mounted mobile laser scanning (MLS) point clouds and helmet-mounted WLS point clouds, which cover various street scenes with a length of over 20km. The experimental results indicate that Reliable-loc exhibits high robustness, accuracy, and efficiency in large-scale, complex street scenes, with a position accuracy of 1.66m, yaw accuracy of 3.09 degrees, and achieves real-time performance. For the code and detailed experimental results, please refer to https://github.com/zouxianghong/Reliable-loc.
Stochastic Communication Avoidance for Recommendation Systems
Erdogan, Lutfi Eren, Kanakagiri, Vijay Anand Raghava, Keutzer, Kurt, Dong, Zhen
One of the major bottlenecks for efficient deployment of neural network based recommendation systems is the memory footprint of their embedding tables. Although many neural network based recommendation systems could benefit from the faster on-chip memory access and increased computational power of hardware accelerators, the large embedding tables in these models often cannot fit on the constrained memory of accelerators. Despite the pervasiveness of these models, prior methods in memory optimization and parallelism fail to address the memory and communication costs of large embedding tables on accelerators. As a result, the majority of models are trained on CPUs, while current implementations of accelerators are hindered by issues such as bottlenecks in inter-device communication and main memory lookups. In this paper, we propose a theoretical framework that analyses the communication costs of arbitrary distributed systems that use lookup tables. We use this framework to propose algorithms that maximize throughput subject to memory, computation, and communication constraints. Furthermore, we demonstrate that our method achieves strong theoretical performance across dataset distributions and memory constraints, applicable to a wide range of use cases from mobile federated learning to warehouse-scale computation. We implement our framework and algorithms in PyTorch and achieve up to 6x increases in training throughput on GPU systems over baselines, on the Criteo Terabytes dataset.
DQRM: Deep Quantized Recommendation Models
Zhou, Yang, Dong, Zhen, Chan, Ellick, Kalamkar, Dhiraj, Marculescu, Diana, Keutzer, Kurt
Large-scale recommendation models are currently the dominant workload for many large Internet companies. These recommenders are characterized by massive embedding tables that are sparsely accessed by the index for user and item features. The size of these 1TB+ tables imposes a severe memory bottleneck for the training and inference of recommendation models. In this work, we propose a novel recommendation framework that is small, powerful, and efficient to run and train, based on the state-of-the-art Deep Learning Recommendation Model (DLRM). The proposed framework makes inference more efficient on the cloud servers, explores the possibility of deploying powerful recommenders on smaller edge devices, and optimizes the workload of the communication overhead in distributed training under the data parallelism settings. Specifically, we show that quantization-aware training (QAT) can impose a strong regularization effect to mitigate the severe overfitting issues suffered by DLRMs. Consequently, we achieved INT4 quantization of DLRM models without any accuracy drop. We further propose two techniques that improve and accelerate the conventional QAT workload specifically for the embedding tables in the recommendation models. Furthermore, to achieve efficient training, we quantize the gradients of the embedding tables into INT8 on top of the well-supported specified sparsification. We show that combining gradient sparsification and quantization together significantly reduces the amount of communication. Briefly, DQRM models with INT4 can achieve 79.07% accuracy on Kaggle with 0.27 GB model size, and 81.21% accuracy on the Terabyte dataset with 1.57 GB, which even outperform FP32 DLRMs that have much larger model sizes (2.16 GB on Kaggle and 12.58 on Terabyte).
Exploiting Motion Prior for Accurate Pose Estimation of Dashboard Cameras
Lu, Yipeng, Zhao, Yifan, Wang, Haiping, Ruan, Zhiwei, Liu, Yuan, Dong, Zhen, Yang, Bisheng
Dashboard cameras (dashcams) record millions of driving videos daily, offering a valuable potential data source for various applications, including driving map production and updates. A necessary step for utilizing these dashcam data involves the estimation of camera poses. However, the low-quality images captured by dashcams, characterized by motion blurs and dynamic objects, pose challenges for existing image-matching methods in accurately estimating camera poses. In this study, we propose a precise pose estimation method for dashcam images, leveraging the inherent camera motion prior. Typically, image sequences captured by dash cameras exhibit pronounced motion prior, such as forward movement or lateral turns, which serve as essential cues for correspondence estimation. Building upon this observation, we devise a pose regression module aimed at learning camera motion prior, subsequently integrating these prior into both correspondences and pose estimation processes. The experiment shows that, in real dashcams dataset, our method is 22% better than the baseline for pose estimation in AUC5\textdegree, and it can estimate poses for 19% more images with less reprojection error in Structure from Motion (SfM).
LLM Inference Unveiled: Survey and Roofline Model Insights
Yuan, Zhihang, Shang, Yuzhang, Zhou, Yang, Dong, Zhen, Zhou, Zhe, Xue, Chenhao, Wu, Bingzhe, Li, Zhikai, Gu, Qingyi, Lee, Yong Jae, Yan, Yan, Chen, Beidi, Sun, Guangyu, Keutzer, Kurt
The field of efficient Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges. Although the field has expanded and is vibrant, there hasn't been a concise framework that analyzes the various methods of LLM Inference to provide a clear understanding of this domain. Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model for systematic analysis of LLM inference techniques. This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems, such as why LLMs are memory-bound, how much memory and computation they need, and how to choose the right hardware. We systematically collate the latest advancements in efficient LLM inference, covering crucial areas such as model compression (e.g., Knowledge Distillation and Quantization), algorithm improvements (e.g., Early Exit and Mixture-of-Expert), and both hardware and system-level enhancements. Our survey stands out by analyzing these methods with roofline model, helping us understand their impact on memory access and computation. This distinctive approach not only showcases the current research landscape but also delivers valuable insights for practical implementation, positioning our work as an indispensable resource for researchers new to the field as well as for those seeking to deepen their understanding of efficient LLM deployment. The analyze tool, LLM-Viewer, is open-sourced.
EPIM: Efficient Processing-In-Memory Accelerators based on Epitome
Wang, Chenyu, Dong, Zhen, Zhou, Daquan, Zhu, Zhenhua, Wang, Yu, Feng, Jiashi, Keutzer, Kurt
The utilization of large-scale neural networks on Processing-In-Memory (PIM) accelerators encounters challenges due to constrained on-chip memory capacity. To tackle this issue, current works explore model compression algorithms to reduce the size of Convolutional Neural Networks (CNNs). Most of these algorithms either aim to represent neural operators with reduced-size parameters (e.g., quantization) or search for the best combinations of neural operators (e.g., neural architecture search). Designing neural operators to align with PIM accelerators' specifications is an area that warrants further study. In this paper, we introduce the Epitome, a lightweight neural operator offering convolution-like functionality, to craft memory-efficient CNN operators for PIM accelerators (EPIM). On the software side, we evaluate epitomes' latency and energy on PIM accelerators and introduce a PIM-aware layer-wise design method to enhance their hardware efficiency. We apply epitome-aware quantization to further reduce the size of epitomes. On the hardware side, we modify the datapath of current PIM accelerators to accommodate epitomes and implement a feature map reuse technique to reduce computation cost. Experimental results reveal that our 3-bit quantized EPIM-ResNet50 attains 71.59% top-1 accuracy on ImageNet, reducing crossbar areas by 30.65 times. EPIM surpasses the state-of-the-art pruning methods on PIM.