Goto

Collaborating Authors

 Dong, Jiahua


From System 1 to System 2: A Survey of Reasoning Large Language Models

arXiv.org Artificial Intelligence

Achieving human-level intelligence requires refining the transition from the fast, intuitive System 1 to the slower, more deliberate System 2 reasoning. While System 1 excels in quick, heuristic decisions, System 2 relies on logical reasoning for more accurate judgments and reduced biases. Foundational Large Language Models (LLMs) excel at fast decision-making but lack the depth for complex reasoning, as they have not yet fully embraced the step-by-step analysis characteristic of true System 2 thinking. Recently, reasoning LLMs like OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding, closely mimicking the deliberate reasoning of System 2 and showcasing human-like cognitive abilities. This survey begins with a brief overview of the progress in foundational LLMs and the early development of System 2 technologies, exploring how their combination has paved the way for reasoning LLMs. Next, we discuss how to construct reasoning LLMs, analyzing their features, the core methods enabling advanced reasoning, and the evolution of various reasoning LLMs. Additionally, we provide an overview of reasoning benchmarks, offering an in-depth comparison of the performance of representative reasoning LLMs. Finally, we explore promising directions for advancing reasoning LLMs and maintain a real-time \href{https://github.com/zzli2022/Awesome-Slow-Reason-System}{GitHub Repository} to track the latest developments. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this rapidly evolving field.


CE-SDWV: Effective and Efficient Concept Erasure for Text-to-Image Diffusion Models via a Semantic-Driven Word Vocabulary

arXiv.org Artificial Intelligence

Large-scale text-to-image (T2I) diffusion models have achieved remarkable generative performance about various concepts. With the limitation of privacy and safety in practice, the generative capability concerning NSFW (Not Safe For Work) concepts is undesirable, e.g., producing sexually explicit photos, and licensed images. The concept erasure task for T2I diffusion models has attracted considerable attention and requires an effective and efficient method. To achieve this goal, we propose a CE-SDWV framework, which removes the target concepts (e.g., NSFW concepts) of T2I diffusion models in the text semantic space by only adjusting the text condition tokens and does not need to re-train the original T2I diffusion model's weights. Specifically, our framework first builds a target concept-related word vocabulary to enhance the representation of the target concepts within the text semantic space, and then utilizes an adaptive semantic component suppression strategy to ablate the target concept-related semantic information in the text condition tokens. To further adapt the above text condition tokens to the original image semantic space, we propose an end-to-end gradient-orthogonal token optimization strategy. Extensive experiments on I2P and UnlearnCanvas benchmarks demonstrate the effectiveness and efficiency of our method.


Resource-Constrained Federated Continual Learning: What Does Matter?

arXiv.org Artificial Intelligence

Federated Continual Learning (FCL) aims to enable sequentially privacy-preserving model training on streams of incoming data that vary in edge devices by preserving previous knowledge while adapting to new data. Current FCL literature focuses on restricted data privacy and access to previously seen data while imposing no constraints on the training overhead. This is unreasonable for FCL applications in real-world scenarios, where edge devices are primarily constrained by resources such as storage, computational budget, and label rate. We revisit this problem with a large-scale benchmark and analyze the performance of state-of-the-art FCL approaches under different resource-constrained settings. Various typical FCL techniques and six datasets in two incremental learning scenarios (Class-IL and Domain-IL) are involved in our experiments. Through extensive experiments amounting to a total of over 1,000+ GPU hours, we find that, under limited resource-constrained settings, existing FCL approaches, with no exception, fail to achieve the expected performance. Our conclusions are consistent in the sensitivity analysis. This suggests that most existing FCL methods are particularly too resource-dependent for real-world deployment. Moreover, we study the performance of typical FCL techniques with resource constraints and shed light on future research directions in FCL.


Federated Incremental Named Entity Recognition

arXiv.org Artificial Intelligence

Federated Named Entity Recognition (FNER) boosts model training within each local client by aggregating the model updates of decentralized local clients, without sharing their private data. However, existing FNER methods assume fixed entity types and local clients in advance, leading to their ineffectiveness in practical applications. In a more realistic scenario, local clients receive new entity types continuously, while new local clients collecting novel data may irregularly join the global FNER training. This challenging setup, referred to here as Federated Incremental NER, renders the global model suffering from heterogeneous forgetting of old entity types from both intra-client and inter-client perspectives. To overcome these challenges, we propose a Local-Global Forgetting Defense (LGFD) model. Specifically, to address intra-client forgetting, we develop a structural knowledge distillation loss to retain the latent space's feature structure and a pseudo-label-guided inter-type contrastive loss to enhance discriminative capability over different entity types, effectively preserving previously learned knowledge within local clients. To tackle inter-client forgetting, we propose a task switching monitor that can automatically identify new entity types under privacy protection and store the latest old global model for knowledge distillation and pseudo-labeling. Experiments demonstrate significant improvement of our LGFD model over comparison methods.


Never-Ending Behavior-Cloning Agent for Robotic Manipulation

arXiv.org Artificial Intelligence

Relying on multi-modal observations, embodied robots could perform multiple robotic manipulation tasks in unstructured real-world environments. However, most language-conditioned behavior-cloning agents still face existing long-standing challenges, i.e., 3D scene representation and human-level task learning, when adapting into new sequential tasks in practical scenarios. We here investigate these above challenges with NBAgent in embodied robots, a pioneering language-conditioned Never-ending Behavior-cloning Agent. It can continually learn observation knowledge of novel 3D scene semantics and robot manipulation skills from skill-shared and skill-specific attributes, respectively. Specifically, we propose a skill-sharedsemantic rendering module and a skill-shared representation distillation module to effectively learn 3D scene semantics from skill-shared attribute, further tackling 3D scene representation overlooking. Meanwhile, we establish a skill-specific evolving planner to perform manipulation knowledge decoupling, which can continually embed novel skill-specific knowledge like human from latent and low-rank space. Finally, we design a never-ending embodied robot manipulation benchmark, and expensive experiments demonstrate the significant performance of our method. Visual results, code, and dataset are provided at: https://neragent.github.io.


Rehearsal-free Federated Domain-incremental Learning

arXiv.org Artificial Intelligence

We introduce a rehearsal-free federated domain incremental learning framework, RefFiL, based on a global prompt-sharing paradigm to alleviate catastrophic forgetting challenges in federated domain-incremental learning, where unseen domains are continually learned. Typical methods for mitigating forgetting, such as the use of additional datasets and the retention of private data from earlier tasks, are not viable in federated learning (FL) due to devices' limited resources. Our method, RefFiL, addresses this by learning domain-invariant knowledge and incorporating various domain-specific prompts from the domains represented by different FL participants. A key feature of RefFiL is the generation of local fine-grained prompts by our domain adaptive prompt generator, which effectively learns from local domain knowledge while maintaining distinctive boundaries on a global scale. We also introduce a domain-specific prompt contrastive learning loss that differentiates between locally generated prompts and those from other domains, enhancing RefFiL's precision and effectiveness. Compared to existing methods, RefFiL significantly alleviates catastrophic forgetting without requiring extra memory space, making it ideal for privacy-sensitive and resource-constrained devices.


Federated Learning with New Knowledge: Fundamentals, Advances, and Futures

arXiv.org Artificial Intelligence

Federated Learning (FL) is a privacy-preserving distributed learning approach that is rapidly developing in an era where privacy protection is increasingly valued. It is this rapid development trend, along with the continuous emergence of new demands for FL in the real world, that prompts us to focus on a very important problem: Federated Learning with New Knowledge. The primary challenge here is to effectively incorporate various new knowledge into existing FL systems and evolve these systems to reduce costs, extend their lifespan, and facilitate sustainable development. In this paper, we systematically define the main sources of new knowledge in FL, including new features, tasks, models, and algorithms. For each source, we thoroughly analyze and discuss how to incorporate new knowledge into existing FL systems and examine the impact of the form and timing of new knowledge arrival on the incorporation process. Furthermore, we comprehensively discuss the potential future directions for FL with new knowledge, considering a variety of factors such as scenario setups, efficiency, and security. There is also a continuously updating repository for this topic: https://github.com/conditionWang/FLNK.


MM-LLMs: Recent Advances in MultiModal Large Language Models

arXiv.org Artificial Intelligence

In the past year, MultiModal Large Language Models (MM-LLMs) have undergone substantial advancements, augmenting off-the-shelf LLMs to support MM inputs or outputs via cost-effective training strategies. The resulting models not only preserve the inherent reasoning and decision-making capabilities of LLMs but also empower a diverse range of MM tasks. In this paper, we provide a comprehensive survey aimed at facilitating further research of MM-LLMs. Specifically, we first outline general design formulations for model architecture and training pipeline. Subsequently, we provide brief introductions of $26$ existing MM-LLMs, each characterized by its specific formulations. Additionally, we review the performance of MM-LLMs on mainstream benchmarks and summarize key training recipes to enhance the potency of MM-LLMs. Lastly, we explore promising directions for MM-LLMs while concurrently maintaining a real-time tracking website for the latest developments in the field. We hope that this survey contributes to the ongoing advancement of the MM-LLMs domain.


Continual Named Entity Recognition without Catastrophic Forgetting

arXiv.org Artificial Intelligence

Continual Named Entity Recognition (CNER) is a burgeoning area, which involves updating an existing model by incorporating new entity types sequentially. Nevertheless, continual learning approaches are often severely afflicted by catastrophic forgetting. This issue is intensified in CNER due to the consolidation of old entity types from previous steps into the non-entity type at each step, leading to what is known as the semantic shift problem of the non-entity type. In this paper, we introduce a pooled feature distillation loss that skillfully navigates the trade-off between retaining knowledge of old entity types and acquiring new ones, thereby more effectively mitigating the problem of catastrophic forgetting. Additionally, we develop a confidence-based pseudo-labeling for the non-entity type, \emph{i.e.,} predicting entity types using the old model to handle the semantic shift of the non-entity type. Following the pseudo-labeling process, we suggest an adaptive re-weighting type-balanced learning strategy to handle the issue of biased type distribution. We carried out comprehensive experiments on ten CNER settings using three different datasets. The results illustrate that our method significantly outperforms prior state-of-the-art approaches, registering an average improvement of $6.3$\% and $8.0$\% in Micro and Macro F1 scores, respectively.


Create Your World: Lifelong Text-to-Image Diffusion

arXiv.org Artificial Intelligence

Text-to-image generative models can produce diverse high-quality images of concepts with a text prompt, which have demonstrated excellent ability in image generation, image translation, etc. We in this work study the problem of synthesizing instantiations of a use's own concepts in a never-ending manner, i.e., create your world, where the new concepts from user are quickly learned with a few examples. To achieve this goal, we propose a Lifelong text-to-image Diffusion Model (L2DM), which intends to overcome knowledge "catastrophic forgetting" for the past encountered concepts, and semantic "catastrophic neglecting" for one or more concepts in the text prompt. In respect of knowledge "catastrophic forgetting", our L2DM framework devises a task-aware memory enhancement module and a elastic-concept distillation module, which could respectively safeguard the knowledge of both prior concepts and each past personalized concept. When generating images with a user text prompt, the solution to semantic "catastrophic neglecting" is that a concept attention artist module can alleviate the semantic neglecting from concept aspect, and an orthogonal attention module can reduce the semantic binding from attribute aspect. To the end, our model can generate more faithful image across a range of continual text prompts in terms of both qualitative and quantitative metrics, when comparing with the related state-of-the-art models. The code will be released at https://wenqiliang.github.io/.