Dognin, Pierre
Sparsity May Be All You Need: Sparse Random Parameter Adaptation
Rios, Jesus, Dognin, Pierre, Luss, Ronny, Ramamurthy, Karthikeyan N.
Full fine-tuning of large language models for alignment and task adaptation has become prohibitively expensive as models have grown in size. Parameter-Efficient Fine-Tuning (PEFT) methods aim at significantly reducing the computational and memory resources needed for fine-tuning these models by only training on a small number of parameters instead of all model parameters. Currently, the most popular PEFT method is the Low-Rank Adaptation (LoRA), which freezes the parameters of the model to be fine-tuned and introduces a small set of trainable parameters in the form of low-rank matrices. We propose simply reducing the number of trainable parameters by randomly selecting a small proportion of the model parameters to train on. In this paper, we compare the efficiency and performance of our proposed approach with PEFT methods, including LoRA, as well as full parameter fine-tuning.
Granite Guardian
Padhi, Inkit, Nagireddy, Manish, Cornacchia, Giandomenico, Chaudhury, Subhajit, Pedapati, Tejaswini, Dognin, Pierre, Murugesan, Keerthiram, Miehling, Erik, Cooper, Martรญn Santillรกn, Fraser, Kieran, Zizzo, Giulio, Hameed, Muhammad Zaid, Purcell, Mark, Desmond, Michael, Pan, Qian, Ashktorab, Zahra, Vejsbjerg, Inge, Daly, Elizabeth M., Hind, Michael, Geyer, Werner, Rawat, Ambrish, Varshney, Kush R., Sattigeri, Prasanna
We introduce the Granite Guardian models, a suite of safeguards designed to provide risk detection for prompts and responses, enabling safe and responsible use in combination with any large language model (LLM). These models offer comprehensive coverage across multiple risk dimensions, including social bias, profanity, violence, sexual content, unethical behavior, jailbreaking, and hallucination-related risks such as context relevance, groundedness, and answer relevance for retrieval-augmented generation (RAG). Trained on a unique dataset combining human annotations from diverse sources and synthetic data, Granite Guardian models address risks typically overlooked by traditional risk detection models, such as jailbreaks and RAG-specific issues. With AUC scores of 0.871 and 0.854 on harmful content and RAG-hallucination-related benchmarks respectively, Granite Guardian is the most generalizable and competitive model available in the space. Released as open-source, Granite Guardian aims to promote responsible AI development across the community.
Evaluating the Prompt Steerability of Large Language Models
Miehling, Erik, Desmond, Michael, Ramamurthy, Karthikeyan Natesan, Daly, Elizabeth M., Dognin, Pierre, Rios, Jesus, Bouneffouf, Djallel, Liu, Miao
Building pluralistic AI requires designing models that are able to be shaped to represent a wide range of value systems and cultures. Achieving this requires first being able to evaluate the degree to which a given model is capable of reflecting various personas. To this end, we propose a benchmark for evaluating the steerability of model personas as a function of prompting. Our design is based on a formal definition of prompt steerability, which analyzes the degree to which a model's joint behavioral distribution can be shifted from its baseline behavior. By defining steerability indices and inspecting how these indices change as a function of steering effort, we can estimate the steerability of a model across various persona dimensions and directions. Our benchmark reveals that the steerability of many current models is limited -- due to both a skew in their baseline behavior and an asymmetry in their steerability across many persona dimensions. We release an implementation of our benchmark at https://github.com/IBM/prompt-steering.
Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations
Achintalwar, Swapnaja, Garcia, Adriana Alvarado, Anaby-Tavor, Ateret, Baldini, Ioana, Berger, Sara E., Bhattacharjee, Bishwaranjan, Bouneffouf, Djallel, Chaudhury, Subhajit, Chen, Pin-Yu, Chiazor, Lamogha, Daly, Elizabeth M., DB, Kirushikesh, de Paula, Rogรฉrio Abreu, Dognin, Pierre, Farchi, Eitan, Ghosh, Soumya, Hind, Michael, Horesh, Raya, Kour, George, Lee, Ja Young, Madaan, Nishtha, Mehta, Sameep, Miehling, Erik, Murugesan, Keerthiram, Nagireddy, Manish, Padhi, Inkit, Piorkowski, David, Rawat, Ambrish, Raz, Orna, Sattigeri, Prasanna, Strobelt, Hendrik, Swaminathan, Sarathkrishna, Tillmann, Christoph, Trivedi, Aashka, Varshney, Kush R., Wei, Dennis, Witherspooon, Shalisha, Zalmanovici, Marcel
Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations. Due to several limiting factors surrounding LLMs (training cost, API access, data availability, etc.), it may not always be feasible to impose direct safety constraints on a deployed model. Therefore, an efficient and reliable alternative is required. To this end, we present our ongoing efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms. In addition to the detectors themselves, we discuss a wide range of uses for these detector models - from acting as guardrails to enabling effective AI governance. We also deep dive into inherent challenges in their development and discuss future work aimed at making the detectors more reliable and broadening their scope.
Contextual Moral Value Alignment Through Context-Based Aggregation
Dognin, Pierre, Rios, Jesus, Luss, Ronny, Padhi, Inkit, Riemer, Matthew D, Liu, Miao, Sattigeri, Prasanna, Nagireddy, Manish, Varshney, Kush R., Bouneffouf, Djallel
Developing value-aligned AI agents is a complex undertaking and an ongoing challenge in the field of AI. Specifically within the domain of Large Language Models (LLMs), the capability to consolidate multiple independently trained dialogue agents, each aligned with a distinct moral value, into a unified system that can adapt to and be aligned with multiple moral values is of paramount importance. In this paper, we propose a system that does contextual moral value alignment based on contextual aggregation. Here, aggregation is defined as the process of integrating a subset of LLM responses that are best suited to respond to a user input, taking into account features extracted from the user's input. The proposed system shows better results in term of alignment to human value compared to the state of the art.
Alignment Studio: Aligning Large Language Models to Particular Contextual Regulations
Achintalwar, Swapnaja, Baldini, Ioana, Bouneffouf, Djallel, Byamugisha, Joan, Chang, Maria, Dognin, Pierre, Farchi, Eitan, Makondo, Ndivhuwo, Mojsilovic, Aleksandra, Nagireddy, Manish, Ramamurthy, Karthikeyan Natesan, Padhi, Inkit, Raz, Orna, Rios, Jesus, Sattigeri, Prasanna, Singh, Moninder, Thwala, Siphiwe, Uceda-Sosa, Rosario A., Varshney, Kush R.
The alignment of large language models is usually done by model providers to add or control behaviors that are common or universally understood across use cases and contexts. In contrast, in this article, we present an approach and architecture that empowers application developers to tune a model to their particular values, social norms, laws and other regulations, and orchestrate between potentially conflicting requirements in context. We lay out three main components of such an Alignment Studio architecture: Framers, Instructors, and Auditors that work in concert to control the behavior of a language model. We illustrate this approach with a running example of aligning a company's internal-facing enterprise chatbot to its business conduct guidelines.
Auditing and Generating Synthetic Data with Controllable Trust Trade-offs
Belgodere, Brian, Dognin, Pierre, Ivankay, Adam, Melnyk, Igor, Mroueh, Youssef, Mojsilovic, Aleksandra, Navratil, Jiri, Nitsure, Apoorva, Padhi, Inkit, Rigotti, Mattia, Ross, Jerret, Schiff, Yair, Vedpathak, Radhika, Young, Richard A.
Real-world data often exhibits bias, imbalance, and privacy risks. Synthetic datasets have emerged to address these issues. This paradigm relies on generative AI models to generate unbiased, privacy-preserving data while maintaining fidelity to the original data. However, assessing the trustworthiness of synthetic datasets and models is a critical challenge. We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models. It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation. We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases like education, healthcare, banking, and human resources, spanning different data modalities such as tabular, time-series, vision, and natural language. This holistic assessment is essential for compliance with regulatory safeguards. We introduce a trustworthiness index to rank synthetic datasets based on their safeguards trade-offs. Furthermore, we present a trustworthiness-driven model selection and cross-validation process during training, exemplified with "TrustFormers" across various data types. This approach allows for controllable trustworthiness trade-offs in synthetic data creation. Our auditing framework fosters collaboration among stakeholders, including data scientists, governance experts, internal reviewers, external certifiers, and regulators. This transparent reporting should become a standard practice to prevent bias, discrimination, and privacy violations, ensuring compliance with policies and providing accountability, safety, and performance guarantees.
Fair Infinitesimal Jackknife: Mitigating the Influence of Biased Training Data Points Without Refitting
Sattigeri, Prasanna, Ghosh, Soumya, Padhi, Inkit, Dognin, Pierre, Varshney, Kush R.
In consequential decision-making applications, mitigating unwanted biases in machine learning models that yield systematic disadvantage to members of groups delineated by sensitive attributes such as race and gender is one key intervention to strive for equity. Focusing on demographic parity and equality of opportunity, in this paper we propose an algorithm that improves the fairness of a pre-trained classifier by simply dropping carefully selected training data points. We select instances based on their influence on the fairness metric of interest, computed using an infinitesimal jackknife-based approach. The dropping of training points is done in principle, but in practice does not require the model to be refit. Crucially, we find that such an intervention does not substantially reduce the predictive performance of the model but drastically improves the fairness metric. Through careful experiments, we evaluate the effectiveness of the proposed approach on diverse tasks and find that it consistently improves upon existing alternatives.
Knowledge Graph Generation From Text
Melnyk, Igor, Dognin, Pierre, Das, Payel
In this work we propose a novel end-to-end multi-stage Knowledge Graph (KG) generation system from textual inputs, separating the overall process into two stages. The graph nodes are generated first using pretrained language model, followed by a simple edge construction head, enabling efficient KG extraction from the text. For each stage we consider several architectural choices that can be used depending on the available training resources. We evaluated the model on a recent WebNLG 2020 Challenge dataset, matching the state-of-the-art performance on text-to-RDF generation task, as well as on New York Times (NYT) and a large-scale TekGen datasets, showing strong overall performance, outperforming the existing baselines. We believe that the proposed system can serve as a viable KG construction alternative to the existing linearization or sampling-based graph generation approaches. Our code can be found at https://github.com/IBM/Grapher
Image Captioning as an Assistive Technology: Lessons Learned from VizWiz 2020 Challenge
Dognin, Pierre, Melnyk, Igor, Mroueh, Youssef, Padhi, Inkit, Rigotti, Mattia, Ross, Jarret, Schiff, Yair, Young, Richard A., Belgodere, Brian
Image captioning has recently demonstrated impressive progress largely owing to the introduction of neural network algorithms trained on curated dataset like MS-COCO. Often work in this field is motivated by the promise of deployment of captioning systems in practical applications. However, the scarcity of data and contexts in many competition datasets renders the utility of systems trained on these datasets limited as an assistive technology in real-world settings, such as helping visually impaired people navigate and accomplish everyday tasks. This gap motivated the introduction of the novel VizWiz dataset, which consists of images taken by the visually impaired and captions that have useful, task-oriented information. In an attempt to help the machine learning computer vision field realize its promise of producing technologies that have positive social impact, the curators of the VizWiz dataset host several competitions, including one for image captioning. This work details the theory and engineering from our winning submission to the 2020 captioning competition. Our work provides a step towards improved assistive image captioning systems.