Goto

Collaborating Authors

 Do, Thanh-Toan


Why Domain Generalization Fail? A View of Necessity and Sufficiency

arXiv.org Machine Learning

Despite a strong theoretical foundation, empirical experiments reveal that existing domain generalization (DG) algorithms often fail to consistently outperform the ERM baseline. We argue that this issue arises because most DG studies focus on establishing theoretical guarantees for generalization under unrealistic assumptions, such as the availability of sufficient, diverse (or even infinite) domains or access to target domain knowledge. As a result, the extent to which domain generalization is achievable in scenarios with limited domains remains largely unexplored. This paper seeks to address this gap by examining generalization through the lens of the conditions necessary for its existence and learnability. Specifically, we systematically establish a set of necessary and sufficient conditions for generalization. Our analysis highlights that existing DG methods primarily act as regularization mechanisms focused on satisfying sufficient conditions, while often neglecting necessary ones. However, sufficient conditions cannot be verified in settings with limited training domains. In such cases, regularization targeting sufficient conditions aims to maximize the likelihood of generalization, whereas regularization targeting necessary conditions ensures its existence. Using this analysis, we reveal the shortcomings of existing DG algorithms by showing that, while they promote sufficient conditions, they inadvertently violate necessary conditions. To validate our theoretical insights, we propose a practical method that promotes the sufficient condition while maintaining the necessary conditions through a novel subspace representation alignment strategy. This approach highlights the advantages of preserving the necessary conditions on well-established DG benchmarks.


Coverage-Constrained Human-AI Cooperation with Multiple Experts

arXiv.org Artificial Intelligence

Human-AI cooperative classification (HAI-CC) approaches aim to develop hybrid intelligent systems that enhance decision-making in various high-stakes real-world scenarios by leveraging both human expertise and AI capabilities. Current HAI-CC methods primarily focus on learning-to-defer (L2D), where decisions are deferred to human experts, and learning-to-complement (L2C), where AI and human experts make predictions cooperatively. However, a notable research gap remains in effectively exploring both L2D and L2C under diverse expert knowledge to improve decision-making, particularly when constrained by the cooperation cost required to achieve a target probability for AI-only selection (i.e., coverage). In this paper, we address this research gap by proposing the Coverage-constrained Learning to Defer and Complement with Specific Experts (CL2DC) method. CL2DC makes final decisions through either AI prediction alone or by deferring to or complementing a specific expert, depending on the input data. Furthermore, we propose a coverage-constrained optimisation to control the cooperation cost, ensuring it approximates a target probability for AI-only selection. This approach enables an effective assessment of system performance within a specified budget. Also, CL2DC is designed to address scenarios where training sets contain multiple noisy-label annotations without any clean-label references. Comprehensive evaluations on both synthetic and real-world datasets demonstrate that CL2DC achieves superior performance compared to state-of-the-art HAI-CC methods.


Learning to Complement and to Defer to Multiple Users

arXiv.org Artificial Intelligence

With the development of Human-AI Collaboration in Classification (HAI-CC), integrating users and AI predictions becomes challenging due to the complex decision-making process. This process has three options: 1) AI autonomously classifies, 2) learning to complement, where AI collaborates with users, and 3) learning to defer, where AI defers to users. Despite their interconnected nature, these options have been studied in isolation rather than as components of a unified system. In this paper, we address this weakness with the novel HAI-CC methodology, called Learning to Complement and to Defer to Multiple Users (LECODU). LECODU not only combines learning to complement and learning to defer strategies, but it also incorporates an estimation of the optimal number of users to engage in the decision process. The training of LECODU maximises classification accuracy and minimises collaboration costs associated with user involvement. Comprehensive evaluations across real-world and synthesized datasets demonstrate LECODU's superior performance compared to state-of-the-art HAI-CC methods. Remarkably, even when relying on unreliable users with high rates of label noise, LECODU exhibits significant improvement over both human decision-makers alone and AI alone.


Model and Feature Diversity for Bayesian Neural Networks in Mutual Learning

arXiv.org Artificial Intelligence

Bayesian Neural Networks (BNNs) offer probability distributions for model parameters, enabling uncertainty quantification in predictions. However, they often underperform compared to deterministic neural networks. Utilizing mutual learning can effectively enhance the performance of peer BNNs. In this paper, we propose a novel approach to improve BNNs performance through deep mutual learning. The proposed approaches aim to increase diversity in both network parameter distributions and feature distributions, promoting peer networks to acquire distinct features that capture different characteristics of the input, which enhances the effectiveness of mutual learning. Experimental results demonstrate significant improvements in the classification accuracy, negative log-likelihood, and expected calibration error when compared to traditional mutual learning for BNNs.


PromptDSI: Prompt-based Rehearsal-free Instance-wise Incremental Learning for Document Retrieval

arXiv.org Artificial Intelligence

Differentiable Search Index (DSI) utilizes Pre-trained Language Models (PLMs) for efficient document retrieval without relying on external indexes. However, DSIs need full re-training to handle updates in dynamic corpora, causing significant computational inefficiencies. We introduce PromptDSI, a rehearsal-free, prompt-based approach for instance-wise incremental learning in document retrieval. PromptDSI attaches prompts to the frozen PLM's encoder of DSI, leveraging its powerful representation to efficiently index new corpora while maintaining a balance between stability and plasticity. We eliminate the initial forward pass of prompt-based continual learning methods that doubles training and inference time. Moreover, we propose a topic-aware prompt pool that employs neural topic embeddings as fixed keys. This strategy ensures diverse and effective prompt usage, addressing the challenge of parameter underutilization caused by the collapse of the query-key matching mechanism. Our empirical evaluations demonstrate that PromptDSI matches IncDSI in managing forgetting while significantly enhancing recall by over 4% on new corpora.


Agnostic Sharpness-Aware Minimization

arXiv.org Artificial Intelligence

Sharpness-aware minimization (SAM) has been instrumental in improving deep neural network training by minimizing both the training loss and the sharpness of the loss landscape, leading the model into flatter minima that are associated with better generalization properties. In another aspect, Model-Agnostic Meta-Learning (MAML) is a framework designed to improve the adaptability of models. MAML optimizes a set of meta-models that are specifically tailored for quick adaptation to multiple tasks with minimal fine-tuning steps and can generalize well with limited data. In this work, we explore the connection between SAM and MAML, particularly in terms of enhancing model generalization. We introduce Agnostic-SAM, a novel approach that combines the principles of both SAM and MAML. Agnostic-SAM adapts the core idea of SAM by optimizing the model towards wider local minima using training data, while concurrently maintaining low loss values on validation data. By doing so, it seeks flatter minima that are not only robust to small perturbations but also less vulnerable to data distributional shift problems. Our experimental results demonstrate that Agnostic-SAM significantly improves generalization over baselines across a range of datasets and under challenging conditions such as noisy labels and data limitation.


Flat Seeking Bayesian Neural Networks

arXiv.org Artificial Intelligence

Bayesian Neural Networks (BNNs) provide a probabilistic interpretation for deep learning models by imposing a prior distribution over model parameters and inferring a posterior distribution based on observed data. The model sampled from the posterior distribution can be used for providing ensemble predictions and quantifying prediction uncertainty. It is well-known that deep learning models with lower sharpness have better generalization ability. However, existing posterior inferences are not aware of sharpness/flatness in terms of formulation, possibly leading to high sharpness for the models sampled from them. In this paper, we develop theories, the Bayesian setting, and the variational inference approach for the sharpness-aware posterior. Specifically, the models sampled from our sharpness-aware posterior, and the optimal approximate posterior estimating this sharpness-aware posterior, have better flatness, hence possibly possessing higher generalization ability. We conduct experiments by leveraging the sharpness-aware posterior with state-of-the-art Bayesian Neural Networks, showing that the flat-seeking counterparts outperform their baselines in all metrics of interest.


Optimal Transport Model Distributional Robustness

arXiv.org Artificial Intelligence

Distributional robustness is a promising framework for training deep learning models that are less vulnerable to adversarial examples and data distribution shifts. Previous works have mainly focused on exploiting distributional robustness in the data space. In this work, we explore an optimal transport-based distributional robustness framework in model spaces. Specifically, we examine a model distribution within a Wasserstein ball centered on a given model distribution that maximizes the loss. We have developed theories that enable us to learn the optimal robust center model distribution. Interestingly, our developed theories allow us to flexibly incorporate the concept of sharpness awareness into training, whether it's a single model, ensemble models, or Bayesian Neural Networks, by considering specific forms of the center model distribution. These forms include a Dirac delta distribution over a single model, a uniform distribution over several models, and a general Bayesian Neural Network. Furthermore, we demonstrate that Sharpness-Aware Minimization (SAM) is a specific case of our framework when using a Dirac delta distribution over a single model, while our framework can be seen as a probabilistic extension of SAM. To validate the effectiveness of our framework in the aforementioned settings, we conducted extensive experiments, and the results reveal remarkable improvements compared to the baselines.


Robotic Perception of Transparent Objects: A Review

arXiv.org Artificial Intelligence

Transparent object perception is a rapidly developing research problem in artificial intelligence. The ability to perceive transparent objects enables robots to achieve higher levels of autonomy, unlocking new applications in various industries such as healthcare, services and manufacturing. Despite numerous datasets and perception methods being proposed in recent years, there is still a lack of in-depth understanding of these methods and the challenges in this field. To address this gap, this article provides a comprehensive survey of the platforms and recent advances for robotic perception of transparent objects. We highlight the main challenges and propose future directions of various transparent object perception tasks, i.e., segmentation, reconstruction, and pose estimation. We also discuss the limitations of existing datasets in diversity and complexity, and the benefits of employing multi-modal sensors, such as RGB-D cameras, thermal cameras, and polarised imaging, for transparent object perception. Furthermore, we identify perception challenges in complex and dynamic environments, as well as for objects with changeable geometries. Finally, we provide an interactive online platform to navigate each reference: \url{https://sites.google.com/view/transperception}.


Towards the Identifiability in Noisy Label Learning: A Multinomial Mixture Approach

arXiv.org Artificial Intelligence

Learning from noisy labels (LNL) plays a crucial role in deep learning. The most promising LNL methods rely on identifying clean-label samples from a dataset with noisy annotations. Such an identification is challenging because the conventional LNL problem, which assumes a single noisy label per instance, is non-identifiable, i.e., clean labels cannot be estimated theoretically without additional heuristics. In this paper, we aim to formally investigate this identifiability issue using multinomial mixture models to determine the constraints that make the problem identifiable. Specifically, we discover that the LNL problem becomes identifiable if there are at least $2C - 1$ noisy labels per instance, where $C$ is the number of classes. To meet this requirement without relying on additional $2C - 2$ manual annotations per instance, we propose a method that automatically generates additional noisy labels by estimating the noisy label distribution based on nearest neighbours. These additional noisy labels enable us to apply the Expectation-Maximisation algorithm to estimate the posterior probabilities of clean labels, which are then used to train the model of interest. We empirically demonstrate that our proposed method is capable of estimating clean labels without any heuristics in several label noise benchmarks, including synthetic, web-controlled, and real-world label noises. Furthermore, our method performs competitively with many state-of-the-art methods.