Djima, Karamatou Yacoubou
Quantile-Based Randomized Kaczmarz for Corrupted Tensor Linear Systems
Castillo, Alejandra, Haddock, Jamie, Hartsock, Iryna, Hoyos, Paulina, Kassab, Lara, Kryshchenko, Alona, Larripa, Kamila, Needell, Deanna, Suryanarayanan, Shambhavi, Djima, Karamatou Yacoubou
The reconstruction of tensor-valued signals from corrupted measurements, known as tensor regression, has become essential in many multi-modal applications such as hyperspectral image reconstruction and medical imaging. In this work, we address the tensor linear system problem $\mathcal{A} \mathcal{X}=\mathcal{B}$, where $\mathcal{A}$ is a measurement operator, $\mathcal{X}$ is the unknown tensor-valued signal, and $\mathcal{B}$ contains the measurements, possibly corrupted by arbitrary errors. Such corruption is common in large-scale tensor data, where transmission, sensory, or storage errors are rare per instance but likely over the entire dataset and may be arbitrarily large in magnitude. We extend the Kaczmarz method, a popular iterative algorithm for solving large linear systems, to develop a Quantile Tensor Randomized Kaczmarz (QTRK) method robust to large, sparse corruptions in the observations $\mathcal{B}$. This approach combines the tensor Kaczmarz framework with quantile-based statistics, allowing it to mitigate adversarial corruptions and improve convergence reliability. We also propose and discuss the Masked Quantile Randomized Kaczmarz (mQTRK) variant, which selectively applies partial updates to handle corruptions further. We present convergence guarantees, discuss the advantages and disadvantages of our approaches, and demonstrate the effectiveness of our methods through experiments, including an application for video deblurring.
Power Spectrum Signatures of Graphs
Djima, Karamatou Yacoubou, Yim, Ka Man
Point signatures based on the Laplacian operators on graphs, point clouds, and manifolds have become popular tools in machine learning for graphs, clustering, and shape analysis. In this work, we propose a novel point signature, the power spectrum signature, a measure on $\mathbb{R}$ defined as the squared graph Fourier transform of a graph signal. Unlike eigenvectors of the Laplacian from which it is derived, the power spectrum signature is invariant under graph automorphisms. We show that the power spectrum signature is stable under perturbations of the input graph with respect to the Wasserstein metric. We focus on the signature applied to classes of indicator functions, and its applications to generating descriptive features for vertices of graphs. To demonstrate the practical value of our signature, we showcase several applications in characterizing geometry and symmetries in point cloud data, and graph regression problems.
Heuristic Framework for Multi-Scale Testing of the Multi-Manifold Hypothesis
Medina, F. Patricia, Ness, Linda, Weber, Melanie, Djima, Karamatou Yacoubou
When analyzing empirical data, we often find that global linear models overestimate the number of parameters required. In such cases, we may ask whether the data lies on or near a manifold or a set of manifolds (a so-called multi-manifold) of lower dimension than the ambient space. This question can be phrased as a (multi-) manifold hypothesis. The identification of such intrinsic multiscale features is a cornerstone of data analysis and representation and has given rise to a large body of work on manifold learning. In this work, we review key results on multi-scale data analysis and intrinsic dimension followed by the introduction of a heuristic, multiscale framework for testing the multi-manifold hypothesis. Our method implements a hypothesis test on a set of spline-interpolated manifolds constructed from variance-based intrinsic dimensions. The workflow is suitable for empirical data analysis as we demonstrate on two use cases.