Goto

Collaborating Authors

 Dinh, Anh-Dung


Generative Physical AI in Vision: A Survey

arXiv.org Artificial Intelligence

Generative Artificial Intelligence (AI) has rapidly advanced the field of computer vision by enabling machines to create and interpret visual data with unprecedented sophistication. This transformation builds upon a foundation of generative models to produce realistic images, videos, and 3D or 4D content. Traditionally, generative models primarily focus on visual fidelity while often neglecting the physical plausibility of generated content. This gap limits their effectiveness in applications requiring adherence to real-world physical laws, such as robotics, autonomous systems, and scientific simulations. As generative AI evolves to increasingly integrate physical realism and dynamic simulation, its potential to function as a "world simulator" expands-enabling the modeling of interactions governed by physics and bridging the divide between virtual and physical realities. This survey systematically reviews this emerging field of physics-aware generative AI in computer vision, categorizing methods based on how they incorporate physical knowledge-either through explicit simulation or implicit learning. We analyze key paradigms, discuss evaluation protocols, and identify future research directions. By offering a comprehensive overview, this survey aims to help future developments in physically grounded generation for vision. The reviewed papers are summarized at https://github.com/BestJunYu/Awesome-Physics-aware-Generation.


Optimization of a Real-Time Wavelet-Based Algorithm for Improving Speech Intelligibility

arXiv.org Artificial Intelligence

The optimization of a wavelet-based algorithm to improve speech intelligibility along with the full data set and results are reported. The discrete-time speech signal is split into frequency sub-bands via a multi-level discrete wavelet transform. Various gains are applied to the sub-band signals before they are recombined to form a modified version of the speech. The sub-band gains are adjusted while keeping the overall signal energy unchanged, and the speech intelligibility under various background interference and simulated hearing loss conditions is enhanced and evaluated objectively and quantitatively using Google Speech-to-Text transcription. A universal set of sub-band gains can work over a range of noise-to-signal ratios up to 4.8 dB. For noise-free speech, overall intelligibility is improved, and the Google transcription accuracy is increased by 16.9 percentage points on average and 86.7 maximum by reallocating the spectral energy toward the mid-frequency sub-bands. For speech already corrupted by noise, improving intelligibility is challenging but still realizable with an increased transcription accuracy of 9.5 percentage points on average and 71.4 maximum. The proposed algorithm is implementable for real-time speech processing and comparatively simpler than previous algorithms. Potential applications include speech enhancement, hearing aids, machine listening, and a better understanding of speech intelligibility.