Goto

Collaborating Authors

 Ding, Yu


Can GNNs Learn Link Heuristics? A Concise Review and Evaluation of Link Prediction Methods

arXiv.org Artificial Intelligence

This paper explores the ability of Graph Neural Networks (GNNs) in learning various forms of information for link prediction, alongside a brief review of existing link prediction methods. Our analysis reveals that GNNs cannot effectively learn structural information related to the number of common neighbors between two nodes, primarily due to the nature of set-based pooling of the neighborhood aggregation scheme. Also, our extensive experiments indicate that trainable node embeddings can improve the performance of GNN-based link prediction models. Importantly, we observe that the denser the graph, the greater such the improvement. We attribute this to the characteristics of node embeddings, where the link state of each link sample could be encoded into the embeddings of nodes that are involved in the neighborhood aggregation of the two nodes in that link sample. In denser graphs, every node could have more opportunities to attend the neighborhood aggregation of other nodes and encode states of more link samples to its embedding, thus learning better node embeddings for link prediction. Lastly, we demonstrate that the insights gained from our research carry important implications in identifying the limitations of existing link prediction methods, which could guide the future development of more robust algorithms.


FreeAvatar: Robust 3D Facial Animation Transfer by Learning an Expression Foundation Model

arXiv.org Artificial Intelligence

Video-driven 3D facial animation transfer aims to drive avatars to reproduce the expressions of actors. Existing methods have achieved remarkable results by constraining both geometric and perceptual consistency. However, geometric constraints (like those designed on facial landmarks) are insufficient to capture subtle emotions, while expression features trained on classification tasks lack fine granularity for complex emotions. To address this, we propose \textbf{FreeAvatar}, a robust facial animation transfer method that relies solely on our learned expression representation. Specifically, FreeAvatar consists of two main components: the expression foundation model and the facial animation transfer model. In the first component, we initially construct a facial feature space through a face reconstruction task and then optimize the expression feature space by exploring the similarities among different expressions. Benefiting from training on the amounts of unlabeled facial images and re-collected expression comparison dataset, our model adapts freely and effectively to any in-the-wild input facial images. In the facial animation transfer component, we propose a novel Expression-driven Multi-avatar Animator, which first maps expressive semantics to the facial control parameters of 3D avatars and then imposes perceptual constraints between the input and output images to maintain expression consistency. To make the entire process differentiable, we employ a trained neural renderer to translate rig parameters into corresponding images. Furthermore, unlike previous methods that require separate decoders for each avatar, we propose a dynamic identity injection module that allows for the joint training of multiple avatars within a single network.


An Outline of Prognostics and Health Management Large Model: Concepts, Paradigms, and Challenges

arXiv.org Artificial Intelligence

Prognosis and Health Management (PHM), critical for ensuring task completion by complex systems and preventing unexpected failures, is widely adopted in aerospace, manufacturing, maritime, rail, energy, etc. However, PHM's development is constrained by bottlenecks like generalization, interpretation and verification abilities. Presently, generative artificial intelligence (AI), represented by Large Model, heralds a technological revolution with the potential to fundamentally reshape traditional technological fields and human production methods. Its capabilities, including strong generalization, reasoning, and generative attributes, present opportunities to address PHM's bottlenecks. To this end, based on a systematic analysis of the current challenges and bottlenecks in PHM, as well as the research status and advantages of Large Model, we propose a novel concept and three progressive paradigms of Prognosis and Health Management Large Model (PHM-LM) through the integration of the Large Model with PHM. Subsequently, we provide feasible technical approaches for PHM-LM to bolster PHM's core capabilities within the framework of the three paradigms. Moreover, to address core issues confronting PHM, we discuss a series of technical challenges of PHM-LM throughout the entire process of construction and application. This comprehensive effort offers a holistic PHM-LM technical framework, and provides avenues for new PHM technologies, methodologies, tools, platforms and applications, which also potentially innovates design, research & development, verification and application mode of PHM. And furthermore, a new generation of PHM with AI will also capably be realized, i.e., from custom to generalized, from discriminative to generative, and from theoretical conditions to practical applications.


Constrained Decoding for Secure Code Generation

arXiv.org Artificial Intelligence

Code Large Language Models (Code LLMs) have been increasingly used by developers to boost productivity, but they often generate vulnerable code. Thus, there is an urgent need to ensure that code generated by Code LLMs is correct and secure. Previous research has primarily focused on generating secure code, overlooking the fact that secure code also needs to be correct. This oversight can lead to a false sense of security. Currently, the community lacks a method to measure actual progress in this area, and we need solutions that address both security and correctness of code generation. This paper introduces a new benchmark, CodeGuard+, along with two new metrics, to measure Code LLMs' ability to generate both secure and correct code. Using our new evaluation methods, we show that the state-of-the-art defense technique, prefix tuning, may not be as strong as previously believed, since it generates secure code but sacrifices functional correctness. We also demonstrate that different decoding methods significantly affect the security of Code LLMs. Furthermore, we explore a new defense direction: constrained decoding for secure code generation. We propose new constrained decoding techniques to generate secure code. Our results reveal that constrained decoding is more effective than prefix tuning to improve the security of Code LLMs, without requiring a specialized training dataset. Moreover, our evaluations over eight state-of-the-art Code LLMs show that constrained decoding has strong performance to improve the security of Code LLMs, and our technique outperforms GPT-4.


Triple GNNs: Introducing Syntactic and Semantic Information for Conversational Aspect-Based Quadruple Sentiment Analysis

arXiv.org Artificial Intelligence

Conversational Aspect-Based Sentiment Analysis (DiaASQ) aims to detect quadruples \{target, aspect, opinion, sentiment polarity\} from given dialogues. In DiaASQ, elements constituting these quadruples are not necessarily confined to individual sentences but may span across multiple utterances within a dialogue. This necessitates a dual focus on both the syntactic information of individual utterances and the semantic interaction among them. However, previous studies have primarily focused on coarse-grained relationships between utterances, thus overlooking the potential benefits of detailed intra-utterance syntactic information and the granularity of inter-utterance relationships. This paper introduces the Triple GNNs network to enhance DiaAsQ. It employs a Graph Convolutional Network (GCN) for modeling syntactic dependencies within utterances and a Dual Graph Attention Network (DualGATs) to construct interactions between utterances. Experiments on two standard datasets reveal that our model significantly outperforms state-of-the-art baselines. The code is available at \url{https://github.com/nlperi2b/Triple-GNNs-}.


Tracking Dynamic Gaussian Density with a Theoretically Optimal Sliding Window Approach

arXiv.org Machine Learning

Dynamic density estimation is ubiquitous in many applications, including computer vision and signal processing. One popular method to tackle this problem is the "sliding window" kernel density estimator. There exist various implementations of this method that use heuristically defined weight sequences for the observed data. The weight sequence, however, is a key aspect of the estimator affecting the tracking performance significantly. In this work, we study the exact mean integrated squared error (MISE) of "sliding window" Gaussian Kernel Density Estimators for evolving Gaussian densities. We provide a principled guide for choosing the optimal weight sequence by theoretically characterizing the exact MISE, which can be formulated as constrained quadratic programming. We present empirical evidence with synthetic datasets to show that our weighting scheme indeed improves the tracking performance compared to heuristic approaches.


TAKDE: Temporal Adaptive Kernel Density Estimator for Real-Time Dynamic Density Estimation

arXiv.org Machine Learning

Real-time density estimation is ubiquitous in many applications, including computer vision and signal processing. Kernel density estimation is arguably one of the most commonly used density estimation techniques, and the use of "sliding window" mechanism adapts kernel density estimators to dynamic processes. In this paper, we derive the asymptotic mean integrated squared error (AMISE) upper bound for the "sliding window" kernel density estimator. This upper bound provides a principled guide to devise a novel estimator, which we name the temporal adaptive kernel density estimator (TAKDE). Compared to heuristic approaches for "sliding window" kernel density estimator, TAKDE is theoretically optimal in terms of the worst-case AMISE. We provide numerical experiments using synthetic and real-world datasets, showing that TAKDE outperforms other state-of-the-art dynamic density estimators (including those outside of kernel family). In particular, TAKDE achieves a superior test log-likelihood with a smaller runtime.


A Neural Tangent Kernel View on Federated Averaging for Deep Linear Neural Network

arXiv.org Machine Learning

Federated averaging (FedAvg) is a widely employed paradigm for collaboratively training models from distributed clients without sharing data. Nowadays, the neural network has achieved remarkable success due to its extraordinary performance, which makes it a preferred choice as the model in FedAvg. However, the optimization problem of the neural network is often non-convex even non-smooth. Furthermore, FedAvg always involves multiple clients and local updates, which results in an inaccurate updating direction. These properties bring difficulties in analyzing the convergence of FedAvg in training neural networks. Recently, neural tangent kernel (NTK) theory has been proposed towards understanding the convergence of first-order methods in tackling the non-convex problem of neural networks. The deep linear neural network is a classical model in theoretical subject due to its simple formulation. Nevertheless, there exists no theoretical result for the convergence of FedAvg in training the deep linear neural network. By applying NTK theory, we make a further step to provide the first theoretical guarantee for the global convergence of FedAvg in training deep linear neural networks. Specifically, we prove FedAvg converges to the global minimum at a linear rate $\mathcal{O}\big((1-\eta K /N)^t\big)$, where $t$ is the number of iterations, $\eta$ is the learning rate, $N$ is the number of clients and $K$ is the number of local updates. Finally, experimental evaluations on two benchmark datasets are conducted to empirically validate the correctness of our theoretical findings.


Cooperative Filtering with Range Measurements: A Distributed Constrained Zonotopic Method

arXiv.org Artificial Intelligence

This article studies the distributed estimation problem of a multi-agent system with bounded absolute and relative range measurements. Parts of the agents are with high-accuracy absolute measurements, which are considered as anchors; the other agents utilize lowaccuracy absolute and relative range measurements, each derives an uncertain range that contains its true state in a distributed manner. Different from previous studies, we design a distributed algorithm to handle the range measurements based on extended constrained zonotopes, which has low computational complexity and high precision. With our proposed algorithm, agents can derive their uncertain range sequentially along the chain topology, such that agents with low-accuracy sensors can benefit from the high-accuracy absolute measurements of anchors and improve the estimation performance. Simulation results corroborate the effectiveness of our proposed algorithm and verify our method can significantly improve the estimation accuracy. Keywords: Set-membership estimation, constrained zonotope, absolute and relative measurements.


Distributed Set-membership Filtering Frameworks For Multi-agent Systems With Absolute and Relative Measurements

arXiv.org Artificial Intelligence

In this paper, we focus on the distributed set-membership filtering (SMFing) problem for a multi-agent system with absolute (taken from agents themselves) and relative (taken from neighbors) measurements. In the literature, the relative measurements are difficult to deal with, and the SMFs highly rely on specific set descriptions. As a result, establishing the general distributed SMFing framework having relative measurements is still an open problem. To solve this problem, first, we provide the set description based on uncertain variables determined by the relative measurements between two agents as the foundation. Surprisingly, the accurate description requires only a single calculation step rather than multiple iterations, which can effectively reduce computational complexity. Based on the derived set description, called the uncertain range, we propose two distributed SMFing frameworks: one calculates the joint uncertain range of the agent itself and its neighbors, while the other only computes the marginal uncertain range of each local system. Furthermore, we compare the performance of our proposed two distributed SMFing frameworks and the benchmark -- centralized SMFing framework. A rigorous set analysis reveals that the distributed SMF can be essentially considered as the process of computing the marginal uncertain range to outer bound the projection of the uncertain range obtained by the centralized SMF in the corresponding subspace. Simulation results corroborate the effectiveness of our proposed distributed frameworks and verify our theoretical analysis.