Ding, Xiaohan
Vision Search Assistant: Empower Vision-Language Models as Multimodal Search Engines
Zhang, Zhixin, Zhang, Yiyuan, Ding, Xiaohan, Yue, Xiangyu
Search engines enable the retrieval of unknown information with texts. However, traditional methods fall short when it comes to understanding unfamiliar visual content, such as identifying an object that the model has never seen before. This challenge is particularly pronounced for large vision-language models (VLMs): if the model has not been exposed to the object depicted in an image, it struggles to generate reliable answers to the user's question regarding that image. Moreover, as new objects and events continuously emerge, frequently updating VLMs is impractical due to heavy computational burdens. To address this limitation, we propose Vision Search Assistant, a novel framework that facilitates collaboration between VLMs and web agents. This approach leverages VLMs' visual understanding capabilities and web agents' real-time information access to perform open-world Retrieval-Augmented Generation via the web. By integrating visual and textual representations through this collaboration, the model can provide informed responses even when the image is novel to the system. Extensive experiments conducted on both open-set and closed-set QA benchmarks demonstrate that the Vision Search Assistant significantly outperforms the other models and can be widely applied to existing VLMs.
Scaling Up Your Kernels: Large Kernel Design in ConvNets towards Universal Representations
Zhang, Yiyuan, Ding, Xiaohan, Yue, Xiangyu
This paper proposes the paradigm of large convolutional kernels in designing modern Convolutional Neural Networks (ConvNets). We establish that employing a few large kernels, instead of stacking multiple smaller ones, can be a superior design strategy. Our work introduces a set of architecture design guidelines for large-kernel ConvNets that optimize their efficiency and performance. We propose the UniRepLKNet architecture, which offers systematical architecture design principles specifically crafted for large-kernel ConvNets, emphasizing their unique ability to capture extensive spatial information without deep layer stacking. This results in a model that not only surpasses its predecessors with an ImageNet accuracy of 88.0%, an ADE20K mIoU of 55.6%, and a COCO box AP of 56.4% but also demonstrates impressive scalability and performance on various modalities such as time-series forecasting, audio, point cloud, and video recognition. These results indicate the universal modeling abilities of large-kernel ConvNets with faster inference speed compared with vision transformers. Our findings reveal that large-kernel ConvNets possess larger effective receptive fields and a higher shape bias, moving away from the texture bias typical of smaller-kernel CNNs. All codes and models are publicly available at https://github.com/AILab-CVC/UniRepLKNet promoting further research and development in the community.
CounterQuill: Investigating the Potential of Human-AI Collaboration in Online Counterspeech Writing
Ding, Xiaohan, Ping, Kaike, Gunturi, Uma Sushmitha, Carik, Buse, Stil, Sophia, Wilhelm, Lance T, Daryanto, Taufiq, Hawdon, James, Lee, Sang Won, Rho, Eugenia H
Online hate speech has become increasingly prevalent on social media platforms, causing harm to individuals and society. While efforts have been made to combat this issue through content moderation, the potential of user-driven counterspeech as an alternative solution remains underexplored. Existing counterspeech methods often face challenges such as fear of retaliation and skill-related barriers. To address these challenges, we introduce CounterQuill, an AI-mediated system that assists users in composing effective and empathetic counterspeech. CounterQuill provides a three-step process: (1) a learning session to help users understand hate speech and counterspeech; (2) a brainstorming session that guides users in identifying key elements of hate speech and exploring counterspeech strategies; and (3) a co-writing session that enables users to draft and refine their counterspeech with CounterQuill. We conducted a within-subjects user study with 20 participants to evaluate CounterQuill in comparison to ChatGPT. Results show that CounterQuill's guidance and collaborative writing process provided users a stronger sense of ownership over their co-authored counterspeech. Users perceived CounterQuill as a writing partner and thus were more willing to post the co-written counterspeech online compared to the one written with ChatGPT.
Leveraging Prompt-Based Large Language Models: Predicting Pandemic Health Decisions and Outcomes Through Social Media Language
Ding, Xiaohan, Carik, Buse, Gunturi, Uma Sushmitha, Reyna, Valerie, Rho, Eugenia H.
We introduce a multi-step reasoning framework using prompt-based LLMs to examine the relationship between social media language patterns and trends in national health outcomes. Grounded in fuzzy-trace theory, which emphasizes the importance of gists of causal coherence in effective health communication, we introduce Role-Based Incremental Coaching (RBIC), a prompt-based LLM framework, to identify gists at-scale. Using RBIC, we systematically extract gists from subreddit discussions opposing COVID-19 health measures (Study 1). We then track how these gists evolve across key events (Study 2) and assess their influence on online engagement (Study 3). Finally, we investigate how the volume of gists is associated with national health trends like vaccine uptake and hospitalizations (Study 4). Our work is the first to empirically link social media linguistic patterns to real-world public health trends, highlighting the potential of prompt-based LLMs in identifying critical online discussion patterns that can form the basis of public health communication strategies.
InteractiveVideo: User-Centric Controllable Video Generation with Synergistic Multimodal Instructions
Zhang, Yiyuan, Kang, Yuhao, Zhang, Zhixin, Ding, Xiaohan, Zhao, Sanyuan, Yue, Xiangyu
We introduce $\textit{InteractiveVideo}$, a user-centric framework for video generation. Different from traditional generative approaches that operate based on user-provided images or text, our framework is designed for dynamic interaction, allowing users to instruct the generative model through various intuitive mechanisms during the whole generation process, e.g. text and image prompts, painting, drag-and-drop, etc. We propose a Synergistic Multimodal Instruction mechanism, designed to seamlessly integrate users' multimodal instructions into generative models, thus facilitating a cooperative and responsive interaction between user inputs and the generative process. This approach enables iterative and fine-grained refinement of the generation result through precise and effective user instructions. With $\textit{InteractiveVideo}$, users are given the flexibility to meticulously tailor key aspects of a video. They can paint the reference image, edit semantics, and adjust video motions until their requirements are fully met. Code, models, and demo are available at https://github.com/invictus717/InteractiveVideo
Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities
Zhang, Yiyuan, Ding, Xiaohan, Gong, Kaixiong, Ge, Yixiao, Shan, Ying, Yue, Xiangyu
We propose to improve transformers of a specific modality with irrelevant data from other modalities, e.g., improve an ImageNet model with audio or point cloud datasets. We would like to highlight that the data samples of the target modality are irrelevant to the other modalities, which distinguishes our method from other works utilizing paired (e.g., CLIP) or interleaved data of different modalities. We propose a methodology named Multimodal Pathway - given a target modality and a transformer designed for it, we use an auxiliary transformer trained with data of another modality and construct pathways to connect components of the two models so that data of the target modality can be processed by both models. In this way, we utilize the universal sequence-to-sequence modeling abilities of transformers obtained from two modalities. As a concrete implementation, we use a modality-specific tokenizer and task-specific head as usual but utilize the transformer blocks of the auxiliary model via a proposed method named Cross-Modal Re-parameterization, which exploits the auxiliary weights without any inference costs. On the image, point cloud, video, and audio recognition tasks, we observe significant and consistent performance improvements with irrelevant data from other modalities. The code and models are available at https://github.com/AILab-CVC/M2PT.
Online Vectorized HD Map Construction using Geometry
Zhang, Zhixin, Zhang, Yiyuan, Ding, Xiaohan, Jin, Fusheng, Yue, Xiangyu
The construction of online vectorized High-Definition (HD) maps is critical for downstream prediction and planning. Recent efforts have built strong baselines for this task, however, shapes and relations of instances in urban road systems are still under-explored, such as parallelism, perpendicular, or rectangle-shape. In our work, we propose GeMap ($\textbf{Ge}$ometry $\textbf{Map}$), which end-to-end learns Euclidean shapes and relations of map instances beyond basic perception. Specifically, we design a geometric loss based on angle and distance clues, which is robust to rigid transformations. We also decouple self-attention to independently handle Euclidean shapes and relations. Our method achieves new state-of-the-art performance on the NuScenes and Argoverse 2 datasets. Remarkably, it reaches a 71.8% mAP on the large-scale Argoverse 2 dataset, outperforming MapTR V2 by +4.4% and surpassing the 70% mAP threshold for the first time. Code is available at https://github.com/cnzzx/GeMap
UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition
Ding, Xiaohan, Zhang, Yiyuan, Ge, Yixiao, Zhao, Sijie, Song, Lin, Yue, Xiangyu, Shan, Ying
Large-kernel convolutional neural networks (ConvNets) have recently received extensive research attention, but there are two unresolved and critical issues that demand further investigation. 1) The architectures of existing large-kernel ConvNets largely follow the design principles of conventional ConvNets or transformers, while the architectural design for large-kernel ConvNets remains under-addressed. 2) As transformers have dominated multiple modalities, it remains to be investigated whether ConvNets also have a strong universal perception ability in domains beyond vision. In this paper, we contribute from two aspects. 1) We propose four architectural guidelines for designing large-kernel ConvNets, the core of which is to exploit the essential characteristics of large kernels that distinguish them from small kernels - they can see wide without going deep. Following such guidelines, our proposed large-kernel ConvNet shows leading performance in image recognition. For example, our models achieve an ImageNet accuracy of 88.0%, ADE20K mIoU of 55.6%, and COCO box AP of 56.4%, demonstrating better performance and higher speed than a number of recently proposed powerful competitors. 2) We discover that large kernels are the key to unlocking the exceptional performance of ConvNets in domains where they were originally not proficient. With certain modality-related preprocessing approaches, the proposed model achieves state-of-the-art performance on time-series forecasting and audio recognition tasks even without modality-specific customization to the architecture. Code and all the models at https://github.com/AILab-CVC/UniRepLKNet.
RefConv: Re-parameterized Refocusing Convolution for Powerful ConvNets
Cai, Zhicheng, Ding, Xiaohan, Shen, Qiu, Cao, Xun
We propose Re-parameterized Refocusing Convolution (RefConv) as a replacement for regular convolutional layers, which is a plug-and-play module to improve the performance without any inference costs. Specifically, given a pre-trained model, RefConv applies a trainable Refocusing Transformation to the basis kernels inherited from the pre-trained model to establish connections among the parameters. For example, a depth-wise RefConv can relate the parameters of a specific channel of convolution kernel to the parameters of the other kernel, i.e., make them refocus on the other parts of the model they have never attended to, rather than focus on the input features only. From another perspective, RefConv augments the priors of existing model structures by utilizing the representations encoded in the pre-trained parameters as the priors and refocusing on them to learn novel representations, thus further enhancing the representational capacity of the pre-trained model. Experimental results validated that RefConv can improve multiple CNN-based models by a clear margin on image classification (up to 1.47% higher top-1 accuracy on ImageNet), object detection and semantic segmentation without introducing any extra inference costs or altering the original model structure. Further studies demonstrated that RefConv can reduce the redundancy of channels and smooth the loss landscape, which explains its effectiveness.
Towards Unified and Effective Domain Generalization
Zhang, Yiyuan, Gong, Kaixiong, Ding, Xiaohan, Zhang, Kaipeng, Lv, Fangrui, Keutzer, Kurt, Yue, Xiangyu
We propose $\textbf{UniDG}$, a novel and $\textbf{Uni}$fied framework for $\textbf{D}$omain $\textbf{G}$eneralization that is capable of significantly enhancing the out-of-distribution generalization performance of foundation models regardless of their architectures. The core idea of UniDG is to finetune models during the inference stage, which saves the cost of iterative training. Specifically, we encourage models to learn the distribution of test data in an unsupervised manner and impose a penalty regarding the updating step of model parameters. The penalty term can effectively reduce the catastrophic forgetting issue as we would like to maximally preserve the valuable knowledge in the original model. Empirically, across 12 visual backbones, including CNN-, MLP-, and Transformer-based models, ranging from 1.89M to 303M parameters, UniDG shows an average accuracy improvement of +5.4% on DomainBed. These performance results demonstrate the superiority and versatility of UniDG. The code is publicly available at https://github.com/invictus717/UniDG