Ding, Shuoyang
Plan2Align: Predictive Planning Based Test-Time Preference Alignment in Paragraph-Level Machine Translation
Wang, Kuang-Da, Chen, Teng-Ruei, Hung, Yu Heng, Ding, Shuoyang, Wu, Yueh-Hua, Wang, Yu-Chiang Frank, Yang, Chao-Han Huck, Peng, Wen-Chih, Hsieh, Ping-Chun
Machine Translation (MT) has been predominantly designed for sentence-level translation using transformer-based architectures. While next-token prediction based Large Language Models (LLMs) demonstrate strong capabilities in long-text translation, non-extensive language models often suffer from omissions and semantic inconsistencies when processing paragraphs. Existing preference alignment methods improve sentence-level translation but fail to ensure coherence over extended contexts due to the myopic nature of next-token generation. We introduce Plan2Align, a test-time alignment framework that treats translation as a predictive planning problem, adapting Model Predictive Control to iteratively refine translation outputs. Experiments on WMT24 Discourse-Level Literary Translation show that Plan2Align significantly improves paragraph-level translation, achieving performance surpassing or on par with the existing training-time and test-time alignment methods on LLaMA-3.1 8B.
EMMeTT: Efficient Multimodal Machine Translation Training
Żelasko, Piotr, Chen, Zhehuai, Wang, Mengru, Galvez, Daniel, Hrinchuk, Oleksii, Ding, Shuoyang, Hu, Ke, Balam, Jagadeesh, Lavrukhin, Vitaly, Ginsburg, Boris
A rising interest in the modality extension of foundation language models warrants discussion on the most effective, and efficient, multimodal training approach. This work focuses on neural machine translation (NMT) and proposes a joint multimodal training regime of Speech-LLM to include automatic speech translation (AST). We investigate two different foundation model architectures, decoder-only GPT and encoder-decoder T5, extended with Canary-1B's speech encoder. To handle joint multimodal training, we propose a novel training framework called EMMeTT. EMMeTT improves training efficiency with the following: balanced sampling across languages, datasets, and modalities; efficient sequential data iteration; and a novel 2D bucketing scheme for multimodal data, complemented by a batch size optimizer (OOMptimizer). We show that a multimodal training consistently helps with both architectures. Moreover, SALM-T5 trained with EMMeTT retains the original NMT capability while outperforming AST baselines on four-language subsets of FLORES and FLEURS. The resultant Multimodal Translation Model produces strong text and speech translation results at the same time.