Goto

Collaborating Authors

 Ding, Ke


OrcaLoca: An LLM Agent Framework for Software Issue Localization

arXiv.org Artificial Intelligence

Recent developments in Large Language Model (LLM) agents are revolutionizing Autonomous Software Engineering (ASE), enabling automated coding, problem fixes, and feature improvements. However, localization -- precisely identifying software problems by navigating to relevant code sections -- remains a significant challenge. Current approaches often yield suboptimal results due to a lack of effective integration between LLM agents and precise code search mechanisms. This paper introduces OrcaLoca, an LLM agent framework that improves accuracy for software issue localization by integrating priority-based scheduling for LLM-guided action, action decomposition with relevance scoring, and distance-aware context pruning. Experimental results demonstrate that OrcaLoca becomes the new open-source state-of-the-art (SOTA) in function match rate (65.33%) on SWE-bench Lite. It also improves the final resolved rate of an open-source framework by 6.33 percentage points through its patch generation integration.


HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly

arXiv.org Artificial Intelligence

There have been many benchmarks for evaluating long-context language models (LCLMs), but developers often rely on synthetic tasks like needle-in-a-haystack (NIAH) or arbitrary subsets of tasks. It remains unclear whether they translate to the diverse downstream applications of LCLMs, and the inconsistency further complicates model comparison. We investigate the underlying reasons behind current practices and find that existing benchmarks often provide noisy signals due to low coverage of applications, insufficient lengths, unreliable metrics, and incompatibility with base models. In this work, we present HELMET (How to Evaluate Long-context Models Effectively and Thoroughly), a comprehensive benchmark encompassing seven diverse, application-centric categories. We also address many issues in previous benchmarks by adding controllable lengths up to 128k tokens, model-based evaluation for reliable metrics, and few-shot prompting for robustly evaluating base models. Consequently, we demonstrate that HELMET offers more reliable and consistent rankings of frontier LCLMs. Through a comprehensive study of 51 LCLMs, we find that (1) synthetic tasks like NIAH are not good predictors of downstream performance; (2) the diverse categories in HELMET exhibit distinct trends and low correlation with each other; and (3) while most LCLMs achieve perfect NIAH scores, open-source models significantly lag behind closed ones when the task requires full-context reasoning or following complex instructions -- the gap widens with increased lengths. Finally, we recommend using our RAG tasks for fast model development, as they are easy to run and more predictive of other downstream performance; ultimately, we advocate for a holistic evaluation across diverse tasks.


Learning to Maximize Mutual Information for Chain-of-Thought Distillation

arXiv.org Artificial Intelligence

Knowledge distillation, the technique of transferring knowledge from large, complex models to smaller ones, marks a pivotal step towards efficient AI deployment. Distilling Step-by-Step~(DSS), a novel method utilizing chain-of-thought~(CoT) distillation, has demonstrated promise by imbuing smaller models with the superior reasoning capabilities of their larger counterparts. In DSS, the distilled model acquires the ability to generate rationales and predict labels concurrently through a multi-task learning framework. However, DSS overlooks the intrinsic relationship between the two training tasks, leading to ineffective integration of CoT knowledge with the task of label prediction. To this end, we investigate the mutual relationship of the two tasks from Information Bottleneck perspective and formulate it as maximizing the mutual information of the representation features of the two tasks. We propose a variational approach to solve this optimization problem using a learning-based method. Our experimental results across four datasets demonstrate that our method outperforms the state-of-the-art DSS. Our findings offer insightful guidance for future research on language model distillation as well as applications involving CoT. Codes are available at \url{https://github.com/xinchen9/cot_distillation_ACL2024}.


Text-Visual Prompting for Efficient 2D Temporal Video Grounding

arXiv.org Artificial Intelligence

In this paper, we study the problem of temporal video grounding (TVG), which aims to predict the starting/ending time points of moments described by a text sentence within a long untrimmed video. Benefiting from fine-grained 3D visual features, the TVG techniques have achieved remarkable progress in recent years. However, the high complexity of 3D convolutional neural networks (CNNs) makes extracting dense 3D visual features time-consuming, which calls for intensive memory and computing resources. Towards efficient TVG, we propose a novel text-visual prompting (TVP) framework, which incorporates optimized perturbation patterns (that we call 'prompts') into both visual inputs and textual features of a TVG model. In sharp contrast to 3D CNNs, we show that TVP allows us to effectively co-train vision encoder and language encoder in a 2D TVG model and improves the performance of crossmodal feature fusion using only low-complexity sparse 2D visual features. Further, we propose a Temporal-Distance IoU (TDIoU) loss for efficient learning of TVG. Experiments on two benchmark datasets, Charades-STA and ActivityNet Captions datasets, empirically show that the proposed TVP significantly boosts the performance of 2D TVG (e.g., 9.79% improvement on Charades-STA and 30.77% improvement on ActivityNet Captions) and achieves 5x inference acceleration over TVG using 3D visual features. Codes are available at Open.Intel.


CPPF: A contextual and post-processing-free model for automatic speech recognition

arXiv.org Artificial Intelligence

ASR systems have become increasingly widespread in recent years. However, their textual outputs often require post-processing tasks before they can be practically utilized. To address this issue, we draw inspiration from the multifaceted capabilities of LLMs and Whisper, and focus on integrating multiple ASR text processing tasks related to speech recognition into the ASR model. This integration not only shortens the multi-stage pipeline, but also prevents the propagation of cascading errors, resulting in direct generation of post-processed text. In this study, we focus on ASR-related processing tasks, including Contextual ASR and multiple ASR post processing tasks. To achieve this objective, we introduce the CPPF model, which offers a versatile and highly effective alternative to ASR processing. CPPF seamlessly integrates these tasks without any significant loss in recognition performance.


Enhancing Multilingual Speech Recognition through Language Prompt Tuning and Frame-Level Language Adapter

arXiv.org Artificial Intelligence

Ref. [6, 7] introduced an additional language identification (LID) module Multilingual intelligent assistants, such as ChatGPT, have to predict language information, while Ref. [2] treated language recently gained popularity. To further expand the applications information as a special textual token and concatenated of multilingual artificial intelligence (AI) assistants and it to the input of the decoder of the autoregressive speech facilitate international communication, it is essential to enhance recognition model, achieving joint modeling of speech recognition the performance of multilingual speech recognition, and language identification. Ref. [3] provided language which is a crucial component of speech interaction. In this information directly as prior information to speech recognition paper, we propose two simple and parameter-efficient methods: models, this can be achieved by encoding language information language prompt tuning and f rame-level language as a one-hot vector or embedding and concatenating adapter, to respectively enhance language-configurable and it with acoustic features.


AntM$^{2}$C: A Large Scale Dataset For Multi-Scenario Multi-Modal CTR Prediction

arXiv.org Artificial Intelligence

Click-through rate (CTR) prediction is a crucial issue in recommendation systems. There has been an emergence of various public CTR datasets. However, existing datasets primarily suffer from the following limitations. Firstly, users generally click different types of items from multiple scenarios, and modeling from multiple scenarios can provide a more comprehensive understanding of users. Existing datasets only include data for the same type of items from a single scenario. Secondly, multi-modal features are essential in multi-scenario prediction as they address the issue of inconsistent ID encoding between different scenarios. The existing datasets are based on ID features and lack multi-modal features. Third, a large-scale dataset can provide a more reliable evaluation of models, fully reflecting the performance differences between models. The scale of existing datasets is around 100 million, which is relatively small compared to the real-world CTR prediction. To address these limitations, we propose AntM$^{2}$C, a Multi-Scenario Multi-Modal CTR dataset based on industrial data from Alipay. Specifically, AntM$^{2}$C provides the following advantages: 1) It covers CTR data of 5 different types of items, providing insights into the preferences of users for different items, including advertisements, vouchers, mini-programs, contents, and videos. 2) Apart from ID-based features, AntM$^{2}$C also provides 2 multi-modal features, raw text and image features, which can effectively establish connections between items with different IDs. 3) AntM$^{2}$C provides 1 billion CTR data with 200 features, including 200 million users and 6 million items. It is currently the largest-scale CTR dataset available. Based on AntM$^{2}$C, we construct several typical CTR tasks and provide comparisons with baseline methods. The dataset homepage is available at https://www.atecup.cn/home.


BatchGNN: Efficient CPU-Based Distributed GNN Training on Very Large Graphs

arXiv.org Artificial Intelligence

We present BatchGNN, a distributed CPU system that showcases techniques that can be used to efficiently train GNNs on terabyte-sized graphs. It reduces communication overhead with macrobatching in which multiple minibatches' subgraph sampling and feature fetching are batched into one communication relay to reduce redundant feature fetches when input features are static. BatchGNN provides integrated graph partitioning and native GNN layer implementations to improve runtime, and it can cache aggregated input features to further reduce sampling overhead. BatchGNN achieves an average $3\times$ speedup over DistDGL on three GNN models trained on OGBN graphs, outperforms the runtimes reported by distributed GPU systems $P^3$ and DistDGLv2, and scales to a terabyte-sized graph.


Learning Reduced-Order Models for Cardiovascular Simulations with Graph Neural Networks

arXiv.org Artificial Intelligence

Reduced-order models based on physics are a popular choice in cardiovascular modeling due to their efficiency, but they may experience reduced accuracy when working with anatomies that contain numerous junctions or pathological conditions. We develop one-dimensional reduced-order models that simulate blood flow dynamics using a graph neural network trained on three-dimensional hemodynamic simulation data. Given the initial condition of the system, the network iteratively predicts the pressure and flow rate at the vessel centerline nodes. Our numerical results demonstrate the accuracy and generalizability of our method in physiological geometries comprising a variety of anatomies and boundary conditions. Our findings demonstrate that our approach can achieve errors below 2% and 3% for pressure and flow rate, respectively, provided there is adequate training data. As a result, our method exhibits superior performance compared to physics-based one-dimensional models, while maintaining high efficiency at inference time.


An Empirical Study of Language Model Integration for Transducer based Speech Recognition

arXiv.org Artificial Intelligence

Utilizing text-only data with an external language model (ELM) in end-to-end RNN-Transducer (RNN-T) for speech recognition is challenging. Recently, a class of methods such as density ratio (DR) and internal language model estimation (ILME) have been developed, outperforming the classic shallow fusion (SF) method. The basic idea behind these methods is that RNN-T posterior should first subtract the implicitly learned internal language model (ILM) prior, in order to integrate the ELM. While recent studies suggest that RNN-T only learns some low-order language model information, the DR method uses a well-trained neural language model with full context, which may be inappropriate for the estimation of ILM and deteriorate the integration performance. Based on the DR method, we propose a low-order density ratio method (LODR) by replacing the estimation with a low-order weak language model. Extensive empirical experiments are conducted on both in-domain and cross-domain scenarios on English LibriSpeech & Tedlium-2 and Chinese WenetSpeech & AISHELL-1 datasets. It is shown that LODR consistently outperforms SF in all tasks, while performing generally close to ILME and better than DR in most tests.