Goto

Collaborating Authors

 Ding, Henghui


QuartDepth: Post-Training Quantization for Real-Time Depth Estimation on the Edge

arXiv.org Artificial Intelligence

Monocular Depth Estimation (MDE) has emerged as a pivotal task in computer vision, supporting numerous real-world applications. However, deploying accurate depth estimation models on resource-limited edge devices, especially Application-Specific Integrated Circuits (ASICs), is challenging due to the high computational and memory demands. Recent advancements in foundational depth estimation deliver impressive results but further amplify the difficulty of deployment on ASICs. To address this, we propose QuartDepth which adopts post-training quantization to quantize MDE models with hardware accelerations for ASICs. Our approach involves quantizing both weights and activations to 4-bit precision, reducing the model size and computation cost. To mitigate the performance degradation, we introduce activation polishing and compensation algorithm applied before and after activation quantization, as well as a weight reconstruction method for minimizing errors in weight quantization. Furthermore, we design a flexible and programmable hardware accelerator by supporting kernel fusion and customized instruction programmability, enhancing throughput and efficiency. Experimental results demonstrate that our framework achieves competitive accuracy while enabling fast inference and higher energy efficiency on ASICs, bridging the gap between high-performance depth estimation and practical edge-device applicability. Code: https://github.com/shawnricecake/quart-depth


LazyDiT: Lazy Learning for the Acceleration of Diffusion Transformers

arXiv.org Artificial Intelligence

Diffusion Transformers have emerged as the preeminent models for a wide array of generative tasks, demonstrating superior performance and efficacy across various applications. The promising results come at the cost of slow inference, as each denoising step requires running the whole transformer model with a large amount of parameters. In this paper, we show that performing the full computation of the model at each diffusion step is unnecessary, as some computations can be skipped by lazily reusing the results of previous steps. Furthermore, we show that the lower bound of similarity between outputs at consecutive steps is notably high, and this similarity can be linearly approximated using the inputs. To verify our demonstrations, we propose the \textbf{LazyDiT}, a lazy learning framework that efficiently leverages cached results from earlier steps to skip redundant computations. Specifically, we incorporate lazy learning layers into the model, effectively trained to maximize laziness, enabling dynamic skipping of redundant computations. Experimental results show that LazyDiT outperforms the DDIM sampler across multiple diffusion transformer models at various resolutions. Furthermore, we implement our method on mobile devices, achieving better performance than DDIM with similar latency.


Transferable Adversarial Attacks on SAM and Its Downstream Models

arXiv.org Artificial Intelligence

The utilization of large foundational models has a dilemma: while fine-tuning downstream tasks from them holds promise for making use of the well-generalized knowledge in practical applications, their open accessibility also poses threats of adverse usage. This paper, for the first time, explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM), by solely utilizing the information from the open-sourced SAM. In contrast to prevailing transfer-based adversarial attacks, we demonstrate the existence of adversarial dangers even without accessing the downstream task and dataset to train a similar surrogate model. To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm to extract the intrinsic vulnerability inherent in the foundation model, which is then utilized as the prior knowledge to guide the generation of adversarial perturbations. Moreover, by formulating the gradient difference in the attacking process between the open-sourced SAM and its fine-tuned downstream models, we theoretically demonstrate that a deviation occurs in the adversarial update direction by directly maximizing the distance of encoded feature embeddings in the open-sourced SAM. Consequently, we propose a gradient robust loss that simulates the associated uncertainty with gradient-based noise augmentation to enhance the robustness of generated adversarial examples (AEs) towards this deviation, thus improving the transferability. Extensive experiments demonstrate the effectiveness of the proposed universal meta-initialized and gradient robust adversarial attack (UMI-GRAT) toward SAMs and their downstream models.


Mitigating the Curse of Dimensionality for Certified Robustness via Dual Randomized Smoothing

arXiv.org Artificial Intelligence

Randomized Smoothing (RS) has been proven a promising method for endowing an arbitrary image classifier with certified robustness. However, the substantial uncertainty inherent in the high-dimensional isotropic Gaussian noise imposes the curse of dimensionality on RS. Specifically, the upper bound of ${\ell_2}$ certified robustness radius provided by RS exhibits a diminishing trend with the expansion of the input dimension $d$, proportionally decreasing at a rate of $1/\sqrt{d}$. This paper explores the feasibility of providing ${\ell_2}$ certified robustness for high-dimensional input through the utilization of dual smoothing in the lower-dimensional space. The proposed Dual Randomized Smoothing (DRS) down-samples the input image into two sub-images and smooths the two sub-images in lower dimensions. Theoretically, we prove that DRS guarantees a tight ${\ell_2}$ certified robustness radius for the original input and reveal that DRS attains a superior upper bound on the ${\ell_2}$ robustness radius, which decreases proportionally at a rate of $(1/\sqrt m + 1/\sqrt n )$ with $m+n=d$. Extensive experiments demonstrate the generalizability and effectiveness of DRS, which exhibits a notable capability to integrate with established methodologies, yielding substantial improvements in both accuracy and ${\ell_2}$ certified robustness baselines of RS on the CIFAR-10 and ImageNet datasets. Code is available at https://github.com/xiasong0501/DRS.


Learning Local and Global Temporal Contexts for Video Semantic Segmentation

arXiv.org Artificial Intelligence

Contextual information plays a core role for video semantic segmentation (VSS). This paper summarizes contexts for VSS in two-fold: local temporal contexts (LTC) which define the contexts from neighboring frames, and global temporal contexts (GTC) which represent the contexts from the whole video. As for LTC, it includes static and motional contexts, corresponding to static and moving content in neighboring frames, respectively. Previously, both static and motional contexts have been studied. However, there is no research about simultaneously learning static and motional contexts (highly complementary). Hence, we propose a Coarse-to-Fine Feature Mining (CFFM) technique to learn a unified presentation of LTC. CFFM contains two parts: Coarse-to-Fine Feature Assembling (CFFA) and Cross-frame Feature Mining (CFM). CFFA abstracts static and motional contexts, and CFM mines useful information from nearby frames to enhance target features. To further exploit more temporal contexts, we propose CFFM++ by additionally learning GTC from the whole video. Specifically, we uniformly sample certain frames from the video and extract global contextual prototypes by k-means. The information within those prototypes is mined by CFM to refine target features. Experimental results on popular benchmarks demonstrate that CFFM and CFFM++ perform favorably against state-of-the-art methods. Our code is available at https://github.com/GuoleiSun/VSS-CFFM


Risk-optimized Outlier Removal for Robust 3D Point Cloud Classification

arXiv.org Artificial Intelligence

With the growth of 3D sensing technology, deep learning system for 3D point clouds has become increasingly important, especially in applications like autonomous vehicles where safety is a primary concern. However, there are also growing concerns about the reliability of these systems when they encounter noisy point clouds, whether occurring naturally or introduced with malicious intent. This paper highlights the challenges of point cloud classification posed by various forms of noise, from simple background noise to malicious backdoor attacks that can intentionally skew model predictions. While there's an urgent need for optimized point cloud denoising, current point outlier removal approaches, an essential step for denoising, rely heavily on handcrafted strategies and are not adapted for higher-level tasks, such as classification. To address this issue, we introduce an innovative point outlier cleansing method that harnesses the power of downstream classification models. By employing gradient-based attribution analysis, we define a novel concept: point risk. Drawing inspiration from tail risk minimization in finance, we recast the outlier removal process as an optimization problem, named PointCVaR. Extensive experiments show that our proposed technique not only robustly filters diverse point cloud outliers but also consistently and significantly enhances existing robust methods for point cloud classification.


Towards Open Vocabulary Learning: A Survey

arXiv.org Artificial Intelligence

In the field of visual scene understanding, deep neural networks have made impressive advancements in various core tasks like segmentation, tracking, and detection. However, most approaches operate on the close-set assumption, meaning that the model can only identify pre-defined categories that are present in the training set. Recently, open vocabulary settings were proposed due to the rapid progress of vision language pre-training. These new approaches seek to locate and recognize categories beyond the annotated label space. The open vocabulary approach is more general, practical, and effective compared to weakly supervised and zero-shot settings. This paper provides a thorough review of open vocabulary learning, summarizing and analyzing recent developments in the field. In particular, we begin by comparing it to related concepts such as zero-shot learning, open-set recognition, and out-of-distribution detection. Then, we review several closely related tasks in the case of segmentation and detection, including long-tail problems, few-shot, and zero-shot settings. For the method survey, we first present the basic knowledge of detection and segmentation in close-set as the preliminary knowledge. Next, we examine various scenarios in which open vocabulary learning is used, identifying common design elements and core ideas. Then, we compare the recent detection and segmentation approaches in commonly used datasets and benchmarks. Finally, we conclude with insights, issues, and discussions regarding future research directions. To our knowledge, this is the first comprehensive literature review of open vocabulary learning. We keep tracing related works at https://github.com/jianzongwu/Awesome-Open-Vocabulary.


Mask-Free Video Instance Segmentation

arXiv.org Artificial Intelligence

The recent advancement in Video Instance Segmentation (VIS) has largely been driven by the use of deeper and increasingly data-hungry transformer-based models. However, video masks are tedious and expensive to annotate, limiting the scale and diversity of existing VIS datasets. In this work, we aim to remove the mask-annotation requirement. We propose MaskFreeVIS, achieving highly competitive VIS performance, while only using bounding box annotations for the object state. We leverage the rich temporal mask consistency constraints in videos by introducing the Temporal KNN-patch Loss (TK-Loss), providing strong mask supervision without any labels. Our TK-Loss finds one-to-many matches across frames, through an efficient patch-matching step followed by a K-nearest neighbor selection. A consistency loss is then enforced on the found matches. Our mask-free objective is simple to implement, has no trainable parameters, is computationally efficient, yet outperforms baselines employing, e.g., state-of-the-art optical flow to enforce temporal mask consistency. We validate MaskFreeVIS on the YouTube-VIS 2019/2021, OVIS and BDD100K MOTS benchmarks. The results clearly demonstrate the efficacy of our method by drastically narrowing the gap between fully and weakly-supervised VIS performance. Our code and trained models are available at https://github.com/SysCV/MaskFreeVis.


Time-Aware Neighbor Sampling for Temporal Graph Networks

arXiv.org Artificial Intelligence

We present a new neighbor sampling method on temporal graphs. In a temporal graph, predicting different nodes' time-varying properties can require the receptive neighborhood of various temporal scales. In this work, we propose the TNS (Time-aware Neighbor Sampling) method: TNS learns from temporal information to provide an adaptive receptive neighborhood for every node at any time. Learning how to sample neighbors is non-trivial, since the neighbor indices in time order are discrete and not differentiable. To address this challenge, we transform neighbor indices from discrete values to continuous ones by interpolating the neighbors' messages. TNS can be flexibly incorporated into popular temporal graph networks to improve their effectiveness without increasing their time complexity. TNS can be trained in an end-to-end manner. It needs no extra supervision and is automatically and implicitly guided to sample the neighbors that are most beneficial for prediction. Empirical results on multiple standard datasets show that TNS yields significant gains on edge prediction and node classification.


Structure-Aware Label Smoothing for Graph Neural Networks

arXiv.org Artificial Intelligence

Representing a label distribution as a one-hot vector is a common practice in training node classification models. However, the one-hot representation may not adequately reflect the semantic characteristics of a node in different classes, as some nodes may be semantically close to their neighbors in other classes. It would cause over-confidence since the models are encouraged to assign full probabilities when classifying every node. While training models with label smoothing can ease this problem to some degree, it still fails to capture the nodes' semantic characteristics implied by the graph structures. In this work, we propose a novel SALS (\textit{Structure-Aware Label Smoothing}) method as an enhancement component to popular node classification models. SALS leverages the graph structures to capture the semantic correlations between the connected nodes and generate the structure-aware label distribution to replace the original one-hot label vectors, thus improving the node classification performance without inference costs. Extensive experiments on seven node classification benchmark datasets reveal the effectiveness of our SALS on improving both transductive and inductive node classification. Empirical results show that SALS is superior to the label smoothing method and enhances the node classification models to outperform the baseline methods.