Goto

Collaborating Authors

 Diaz, Rodrigo


AI (r)evolution -- where are we heading? Thoughts about the future of music and sound technologies in the era of deep learning

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) technologies such as deep learning are evolving very quickly bringing many changes to our everyday lives. To explore the future impact and potential of AI in the field of music and sound technologies a doctoral day was held between Queen Mary University of London (QMUL, UK) and Sciences et Technologies de la Musique et du Son (STMS, France). Prompt questions about current trends in AI and music were generated by academics from QMUL and STMS. Students from the two institutions then debated these questions. This report presents a summary of the student debates on the topics of: Data, Impact, and the Environment; Responsible Innovation and Creative Practice; Creativity and Bias; and From Tools to the Singularity. The students represent the future generation of AI and music researchers. The academics represent the incumbent establishment. The student debates reported here capture visions, dreams, concerns, uncertainties, and contentious issues for the future of AI and music as the establishment is rightfully challenged by the next generation.


Multi-View Mesh Reconstruction with Neural Deferred Shading

arXiv.org Artificial Intelligence

We propose an analysis-by-synthesis method for fast multi-view 3D reconstruction of opaque objects with arbitrary materials and illumination. State-of-the-art methods use both neural surface representations and neural rendering. While flexible, neural surface representations are a significant bottleneck in optimization runtime. Instead, we represent surfaces as triangle meshes and build a differentiable rendering pipeline around triangle rasterization and neural shading. The renderer is used in a gradient descent optimization where both a triangle mesh and a neural shader are jointly optimized to reproduce the multi-view images. We evaluate our method on a public 3D reconstruction dataset and show that it can match the reconstruction accuracy of traditional baselines and neural approaches while surpassing them in optimization runtime. Additionally, we investigate the shader and find that it learns an interpretable representation of appearance, enabling applications such as 3D material editing.


Rigid-Body Sound Synthesis with Differentiable Modal Resonators

arXiv.org Artificial Intelligence

Physical models of rigid bodies are used for sound synthesis in applications from virtual environments to music production. Traditional methods such as modal synthesis often rely on computationally expensive numerical solvers, while recent deep learning approaches are limited by post-processing of their results. In this work we present a novel end-to-end framework for training a deep neural network to generate modal resonators for a given 2D shape and material, using a bank of differentiable IIR filters. We demonstrate our method on a dataset of synthetic objects, but train our model using an audio-domain objective, paving the way for physically-informed synthesisers to be learned directly from recordings of real-world objects.