Di Guglielmo, Giuseppe
End-to-end workflow for machine learning-based qubit readout with QICK and hls4ml
Di Guglielmo, Giuseppe, Du, Botao, Campos, Javier, Boltasseva, Alexandra, Dixit, Akash V., Fahim, Farah, Kudyshev, Zhaxylyk, Lopez, Santiago, Ma, Ruichao, Perdue, Gabriel N., Tran, Nhan, Yesilyurt, Omer, Bowring, Daniel
We present an end-to-end workflow for superconducting qubit readout that embeds co-designed Neural Networks (NNs) into the Quantum Instrumentation Control Kit (QICK). Capitalizing on the custom firmware and software of the QICK platform, which is built on Xilinx RFSoC FPGAs, we aim to leverage machine learning (ML) to address critical challenges in qubit readout accuracy and scalability. The workflow utilizes the hls4ml package and employs quantization-aware training to translate ML models into hardware-efficient FPGA implementations via user-friendly Python APIs. We experimentally demonstrate the design, optimization, and integration of an ML algorithm for single transmon qubit readout, achieving 96% single-shot fidelity with a latency of 32ns and less than 16% FPGA look-up table resource utilization. Our results offer the community an accessible workflow to advance ML-driven readout and adaptive control in quantum information processing applications.
Low latency optical-based mode tracking with machine learning deployed on FPGAs on a tokamak
Wei, Yumou, Forelli, Ryan F., Hansen, Chris, Levesque, Jeffrey P., Tran, Nhan, Agar, Joshua C., Di Guglielmo, Giuseppe, Mauel, Michael E., Navratil, Gerald A.
Active feedback control in magnetic confinement fusion devices is desirable to mitigate plasma instabilities and enable robust operation. Optical high-speed cameras provide a powerful, non-invasive diagnostic and can be suitable for these applications. In this study, we process fast camera data, at rates exceeding 100kfps, on $\textit{in situ}$ Field Programmable Gate Array (FPGA) hardware to track magnetohydrodynamic (MHD) mode evolution and generate control signals in real-time. Our system utilizes a convolutional neural network (CNN) model which predicts the $n$=1 MHD mode amplitude and phase using camera images with better accuracy than other tested non-deep-learning-based methods. By implementing this model directly within the standard FPGA readout hardware of the high-speed camera diagnostic, our mode tracking system achieves a total trigger-to-output latency of 17.6$\mu$s and a throughput of up to 120kfps. This study at the High Beta Tokamak-Extended Pulse (HBT-EP) experiment demonstrates an FPGA-based high-speed camera data acquisition and processing system, enabling application in real-time machine-learning-based tokamak diagnostic and control as well as potential applications in other scientific domains.
Neural network accelerator for quantum control
Xu, David, Özgüler, A. Barış, Di Guglielmo, Giuseppe, Tran, Nhan, Perdue, Gabriel N., Carloni, Luca, Fahim, Farah
Efficient quantum control is necessary for practical quantum computing implementations with current technologies. Conventional algorithms for determining optimal control parameters are computationally expensive, largely excluding them from use outside of the simulation. Existing hardware solutions structured as lookup tables are imprecise and costly. By designing a machine learning model to approximate the results of traditional tools, a more efficient method can be produced. Such a model can then be synthesized into a hardware accelerator for use in quantum systems. In this study, we demonstrate a machine learning algorithm for predicting optimal pulse parameters. This algorithm is lightweight enough to fit on a low-resource FPGA and perform inference with a latency of 175 ns and pipeline interval of 5 ns with $~>~$0.99 gate fidelity. In the long term, such an accelerator could be used near quantum computing hardware where traditional computers cannot operate, enabling quantum control at a reasonable cost at low latencies without incurring large data bandwidths outside of the cryogenic environment.
Applications and Techniques for Fast Machine Learning in Science
Deiana, Allison McCarn, Tran, Nhan, Agar, Joshua, Blott, Michaela, Di Guglielmo, Giuseppe, Duarte, Javier, Harris, Philip, Hauck, Scott, Liu, Mia, Neubauer, Mark S., Ngadiuba, Jennifer, Ogrenci-Memik, Seda, Pierini, Maurizio, Aarrestad, Thea, Bahr, Steffen, Becker, Jurgen, Berthold, Anne-Sophie, Bonventre, Richard J., Bravo, Tomas E. Muller, Diefenthaler, Markus, Dong, Zhen, Fritzsche, Nick, Gholami, Amir, Govorkova, Ekaterina, Hazelwood, Kyle J, Herwig, Christian, Khan, Babar, Kim, Sehoon, Klijnsma, Thomas, Liu, Yaling, Lo, Kin Ho, Nguyen, Tri, Pezzullo, Gianantonio, Rasoulinezhad, Seyedramin, Rivera, Ryan A., Scholberg, Kate, Selig, Justin, Sen, Sougata, Strukov, Dmitri, Tang, William, Thais, Savannah, Unger, Kai Lukas, Vilalta, Ricardo, Krosigk, Belinavon, Warburton, Thomas K., Flechas, Maria Acosta, Aportela, Anthony, Calvet, Thomas, Cristella, Leonardo, Diaz, Daniel, Doglioni, Caterina, Galati, Maria Domenica, Khoda, Elham E, Fahim, Farah, Giri, Davide, Hawks, Benjamin, Hoang, Duc, Holzman, Burt, Hsu, Shih-Chieh, Jindariani, Sergo, Johnson, Iris, Kansal, Raghav, Kastner, Ryan, Katsavounidis, Erik, Krupa, Jeffrey, Li, Pan, Madireddy, Sandeep, Marx, Ethan, McCormack, Patrick, Meza, Andres, Mitrevski, Jovan, Mohammed, Mohammed Attia, Mokhtar, Farouk, Moreno, Eric, Nagu, Srishti, Narayan, Rohin, Palladino, Noah, Que, Zhiqiang, Park, Sang Eon, Ramamoorthy, Subramanian, Rankin, Dylan, Rothman, Simon, Sharma, Ashish, Summers, Sioni, Vischia, Pietro, Vlimant, Jean-Roch, Weng, Olivia
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.
Fast convolutional neural networks on FPGAs with hls4ml
Aarrestad, Thea, Loncar, Vladimir, Pierini, Maurizio, Summers, Sioni, Ngadiuba, Jennifer, Petersson, Christoffer, Linander, Hampus, Iiyama, Yutaro, Di Guglielmo, Giuseppe, Duarte, Javier, Harris, Philip, Rankin, Dylan, Jindariani, Sergo, Pedro, Kevin, Tran, Nhan, Liu, Mia, Kreinar, Edward, Wu, Zhenbin, Hoang, Duc
The hls4ml library [1, 2] is an open source software designed to facilitate the deployment of machine learning (ML) models on field-programmable gate arrays (FPGAs), targeting low-latency and low-power edge applications. Taking as input a neural network model, hls4ml generates C/C code designed to be transpiled into FPGA firmware by processing it with a high-level synthesis (HLS) library. The development of hls4ml was historically driven by the need to integrate ML algorithms in the first stage of the real-time data processing of particle physics experiments operating at the CERN Large Hadron Collider (LHC). The LHC produces high-energy proton collisions (or events) every 25 ns, each consisting of about 1 MB of raw data. Since this throughput is overwhelming for the currently available processing and storage resources, the LHC experiments run a real-time event selection system, the so-called Level-1 trigger (L1T), to reduce the event rate from 40 MHz to 100 kHz [3-6]. Due to the size of the buffering system, the L1T system operates with a fixed latency of O(1 µs). While hls4ml excels as a tool to automatically generate low-latency ML firmware for L1T applications, it also offers interesting opportunities for edge-computing applications beyond particle physics whenever efficient, e.g.