Goto

Collaborating Authors

 Deshpande, Amit


On the Power of Randomization in Fair Classification and Representation

arXiv.org Artificial Intelligence

Fair classification and fair representation learning are two important problems in supervised and unsupervised fair machine learning, respectively. Fair classification asks for a classifier that maximizes accuracy on a given data distribution subject to fairness constraints. Fair representation maps a given data distribution over the original feature space to a distribution over a new representation space such that all classifiers over the representation satisfy fairness. In this paper, we examine the power of randomization in both these problems to minimize the loss of accuracy that results when we impose fairness constraints. Previous work on fair classification has characterized the optimal fair classifiers on a given data distribution that maximize accuracy subject to fairness constraints, e.g., Demographic Parity (DP), Equal Opportunity (EO), and Predictive Equality (PE). We refine these characterizations to demonstrate when the optimal randomized fair classifiers can surpass their deterministic counterparts in accuracy. We also show how the optimal randomized fair classifier that we characterize can be obtained as a solution to a convex optimization problem. Recent work has provided techniques to construct fair representations for a given data distribution such that any classifier over this representation satisfies DP. However, the classifiers on these fair representations either come with no or weak accuracy guarantees when compared to the optimal fair classifier on the original data distribution. Extending our ideas for randomized fair classification, we improve on these works, and construct DP-fair, EO-fair, and PE-fair representations that have provably optimal accuracy and suffer no accuracy loss compared to the optimal DP-fair, EO-fair, and PE-fair classifiers respectively on the original data distribution.


NICE: To Optimize In-Context Examples or Not?

arXiv.org Artificial Intelligence

Recent works have shown that large language models (LLMs) work remarkably well on a wide range of tasks through in-context learning and optimization of in-context examples (ICE). However, most of these studies assume either a fixed or no instruction provided in the prompt, leading to the apparent consensus that the optimization of in-context examples is critical for better performance. We challenge this consensus for instruction-tuned LLMs by investigating the necessity of optimizing in-context examples when task-specific instructions are provided, and find that there are tasks for which various ways of optimizing in-context examples yield diminishing returns. We introduce a task-specific metric called \metriclong{} (\metric) that quantifies the learnability of tasks from a given instruction, and provides a heuristic that helps decide whether to optimize for instructions or ICE for any new task. On a wide range of tasks and a systematically created instruction set with gradually added details, we validate our hypothesis empirically by computing \metric with query-dependent bins of examples, comparing different instructions with ICE selection methods, and performing label perturbation experiments. We conclude that tasks can be divided into two broad classes based on the \metric metric, where the returns on ICE optimization follow predictable trends when instructions are provided in the prompt.


How Far Can Fairness Constraints Help Recover From Biased Data?

arXiv.org Artificial Intelligence

A general belief in fair classification is that fairness constraints incur a trade-off with accuracy, which biased data may worsen. Contrary to this belief, Blum & Stangl (2019) show that fair classification with equal opportunity constraints even on extremely biased data can recover optimally accurate and fair classifiers on the original data distribution. Their result is interesting because it demonstrates that fairness constraints can implicitly rectify data bias and simultaneously overcome a perceived fairness-accuracy trade-off. Their data bias model simulates under-representation and label bias in underprivileged population, and they show the above result on a stylized data distribution with i.i.d. label noise, under simple conditions on the data distribution and bias parameters. We propose a general approach to extend the result of Blum & Stangl (2019) to different fairness constraints, data bias models, data distributions, and hypothesis classes. We strengthen their result, and extend it to the case when their stylized distribution has labels with Massart noise instead of i.i.d. noise. We prove a similar recovery result for arbitrary data distributions using fair reject option classifiers. We further generalize it to arbitrary data distributions and arbitrary hypothesis classes, i.e., we prove that for any data distribution, if the optimally accurate classifier in a given hypothesis class is fair and robust, then it can be recovered through fair classification with equal opportunity constraints on the biased distribution whenever the bias parameters satisfy certain simple conditions. Finally, we show applications of our technique to time-varying data bias in classification and fair machine learning pipelines.


Rethinking Robustness of Model Attributions

arXiv.org Artificial Intelligence

For machine learning models to be reliable and trustworthy, their decisions must be interpretable. As these models find increasing use in safety-critical applications, it is important that not just the model predictions but also their explanations (as feature attributions) be robust to small human-imperceptible input perturbations. Recent works have shown that many attribution methods are fragile and have proposed improvements in either these methods or the model training. We observe two main causes for fragile attributions: first, the existing metrics of robustness (e.g., top-k intersection) over-penalize even reasonable local shifts in attribution, thereby making random perturbations to appear as a strong attack, and second, the attribution can be concentrated in a small region even when there are multiple important parts in an image. To rectify this, we propose simple ways to strengthen existing metrics and attribution methods that incorporate locality of pixels in robustness metrics and diversity of pixel locations in attributions. Towards the role of model training in attributional robustness, we empirically observe that adversarially trained models have more robust attributions on smaller datasets, however, this advantage disappears in larger datasets. Code is available at https://github.com/ksandeshk/LENS.


On Comparing Fair Classifiers under Data Bias

arXiv.org Artificial Intelligence

In this paper, we consider a theoretical model for injecting data bias, namely, under-representation and label bias (Blum & Stangl, 2019). We empirically study the effect of varying data biases on the accuracy and fairness of fair classifiers. Through extensive experiments on both synthetic and real-world datasets (e.g., Adult, German Credit, Bank Marketing, COMPAS), we empirically audit pre-, in-, and post-processing fair classifiers from standard fairness toolkits for their fairness and accuracy by injecting varying amounts of under-representation and label bias in their training data (but not the test data). Our main observations are: 1. The fairness and accuracy of many standard fair classifiers degrade severely as the bias injected in their training data increases, 2. A simple logistic regression model trained on the right data can often outperform, in both accuracy and fairness, most fair classifiers trained on biased training data, and 3. A few, simple fairness techniques (e.g., reweighing, exponentiated gradients) seem to offer stable accuracy and fairness guarantees even when their training data is injected with under-representation and label bias. Our experiments also show how to integrate a measure of data bias risk in the existing fairness dashboards for real-world deployments.


Causal Effect Regularization: Automated Detection and Removal of Spurious Attributes

arXiv.org Artificial Intelligence

In many classification datasets, the task labels are spuriously correlated with some input attributes. Classifiers trained on such datasets often rely on these attributes for prediction, especially when the spurious correlation is high, and thus fail to generalize whenever there is a shift in the attributes' correlation at deployment. If we assume that the spurious attributes are known a priori, several methods have been proposed to learn a classifier that is invariant to the specified attributes. However, in real-world data, information about spurious attributes is typically unavailable. Therefore, we propose a method to automatically identify spurious attributes by estimating their causal effect on the label and then use a regularization objective to mitigate the classifier's reliance on them. Compared to a recent method for identifying spurious attributes, we find that our method is more accurate in removing the attribute from the learned model, especially when spurious correlation is high. Specifically, across synthetic, semi-synthetic, and real-world datasets, our method shows significant improvement in a metric used to quantify the dependence of a classifier on spurious attributes ($\Delta$Prob), while obtaining better or similar accuracy. In addition, our method mitigates the reliance on spurious attributes even under noisy estimation of causal effects. To explain the empirical robustness of our method, we create a simple linear classification task with two sets of attributes: causal and spurious. We prove that our method only requires that the ranking of estimated causal effects is correct across attributes to select the correct classifier.


Improved Outlier Robust Seeding for k-means

arXiv.org Artificial Intelligence

The $k$-means is a popular clustering objective, although it is inherently non-robust and sensitive to outliers. Its popular seeding or initialization called $k$-means++ uses $D^{2}$ sampling and comes with a provable $O(\log k)$ approximation guarantee \cite{AV2007}. However, in the presence of adversarial noise or outliers, $D^{2}$ sampling is more likely to pick centers from distant outliers instead of inlier clusters, and therefore its approximation guarantees \textit{w.r.t.} $k$-means solution on inliers, does not hold. Assuming that the outliers constitute a constant fraction of the given data, we propose a simple variant in the $D^2$ sampling distribution, which makes it robust to the outliers. Our algorithm runs in $O(ndk)$ time, outputs $O(k)$ clusters, discards marginally more points than the optimal number of outliers, and comes with a provable $O(1)$ approximation guarantee. Our algorithm can also be modified to output exactly $k$ clusters instead of $O(k)$ clusters, while keeping its running time linear in $n$ and $d$. This is an improvement over previous results for robust $k$-means based on LP relaxation and rounding \cite{Charikar}, \cite{KrishnaswamyLS18} and \textit{robust $k$-means++} \cite{DeshpandeKP20}. Our empirical results show the advantage of our algorithm over $k$-means++~\cite{AV2007}, uniform random seeding, greedy sampling for $k$ means~\cite{tkmeanspp}, and robust $k$-means++~\cite{DeshpandeKP20}, on standard real-world and synthetic data sets used in previous work. Our proposal is easily amenable to scalable, faster, parallel implementations of $k$-means++ \cite{Bahmani,BachemL017} and is of independent interest for coreset constructions in the presence of outliers \cite{feldman2007ptas,langberg2010universal,feldman2011unified}.


Optimizing Group-Fair Plackett-Luce Ranking Models for Relevance and Ex-Post Fairness

arXiv.org Artificial Intelligence

In learning-to-rank (LTR), optimizing only the relevance (or the expected ranking utility) can cause representational harm to certain categories of items. Moreover, if there is implicit bias in the relevance scores, LTR models may fail to optimize for true relevance. Previous works have proposed efficient algorithms to train stochastic ranking models that achieve fairness of exposure to the groups ex-ante (or, in expectation), which may not guarantee representation fairness to the groups ex-post, that is, after realizing a ranking from the stochastic ranking model. Typically, ex-post fairness is achieved by post-processing, but previous work does not train stochastic ranking models that are aware of this post-processing. In this paper, we propose a novel objective that maximizes expected relevance only over those rankings that satisfy given representation constraints to ensure ex-post fairness. Building upon recent work on an efficient sampler for ex-post group-fair rankings, we propose a group-fair Plackett-Luce model and show that it can be efficiently optimized for our objective in the LTR framework. Experiments on three real-world datasets show that our group-fair algorithm guarantees fairness alongside usually having better relevance compared to the LTR baselines. In addition, our algorithm also achieves better relevance than post-processing baselines, which also ensures ex-post fairness. Further, when implicit bias is injected into the training data, our algorithm typically outperforms existing LTR baselines in relevance.


Sampling Individually-Fair Rankings that are Always Group Fair

arXiv.org Artificial Intelligence

Rankings on online platforms help their end-users find the relevant information -- people, news, media, and products -- quickly. Fair ranking tasks, which ask to rank a set of items to maximize utility subject to satisfying group-fairness constraints, have gained significant interest in the Algorithmic Fairness, Information Retrieval, and Machine Learning literature. Recent works, however, identify uncertainty in the utilities of items as a primary cause of unfairness and propose introducing randomness in the output. This randomness is carefully chosen to guarantee an adequate representation of each item (while accounting for the uncertainty). However, due to this randomness, the output rankings may violate group fairness constraints. We give an efficient algorithm that samples rankings from an individually-fair distribution while ensuring that every output ranking is group fair. The expected utility of the output ranking is at least $\alpha$ times the utility of the optimal fair solution. Here, $\alpha$ depends on the utilities, position-discounts, and constraints -- it approaches 1 as the range of utilities or the position-discounts shrinks, or when utilities satisfy distributional assumptions. Empirically, we observe that our algorithm achieves individual and group fairness and that Pareto dominates the state-of-the-art baselines.


Sampling Ex-Post Group-Fair Rankings

arXiv.org Artificial Intelligence

Randomized rankings have been of recent interest to achieve ex-ante fairer exposure and better robustness than deterministic rankings. We propose a set of natural axioms for randomized group-fair rankings and prove that there exists a unique distribution $D$ that satisfies our axioms and is supported only over ex-post group-fair rankings, i.e., rankings that satisfy given lower and upper bounds on group-wise representation in the top-$k$ ranks. Our problem formulation works even when there is implicit bias, incomplete relevance information, or only ordinal ranking is available instead of relevance scores or utility values. We propose two algorithms to sample a random group-fair ranking from the distribution $D$ mentioned above. Our first dynamic programming-based algorithm samples ex-post group-fair rankings uniformly at random in time $O(k^2\ell)$, where $\ell$ is the number of groups. Our second random walk-based algorithm samples ex-post group-fair rankings from a distribution $\delta$-close to $D$ in total variation distance and has expected running time $O^*(k^2\ell^2)$, when there is a sufficient gap between the given upper and lower bounds on the group-wise representation. The former does exact sampling, but the latter runs significantly faster on real-world data sets for larger values of $k$. We give empirical evidence that our algorithms compare favorably against recent baselines for fairness and ranking utility on real-world data sets.