Deshmukh, Aniket
Multi-Objective Alignment of Large Language Models Through Hypervolume Maximization
Mukherjee, Subhojyoti, Lalitha, Anusha, Sengupta, Sailik, Deshmukh, Aniket, Kveton, Branislav
Multi-objective alignment from human feedback (MOAHF) in large language models (LLMs) is a challenging problem as human preferences are complex, multifaceted, and often conflicting. Recent works on MOAHF considered a-priori multi-objective optimization (MOO), where human preferences are known at training or inference time. In contrast, when human preferences are unknown or difficult to quantify, a natural approach is to cover the Pareto front by multiple diverse solutions. We propose an algorithm HaM for learning diverse LLM policies that maximizes their hypervolume. This is the first application of a-posteriori MOO to MOAHF. HaM is computationally and space efficient, and empirically superior across objectives such as harmlessness, helpfulness, humor, faithfulness, and hallucination, on various datasets.
Online Posterior Sampling with a Diffusion Prior
Kveton, Branislav, Oreshkin, Boris, Park, Youngsuk, Deshmukh, Aniket, Song, Rui
Posterior sampling in contextual bandits with a Gaussian prior can be implemented exactly or approximately using the Laplace approximation. The Gaussian prior is computationally efficient but it cannot describe complex distributions. In this work, we propose approximate posterior sampling algorithms for contextual bandits with a diffusion model prior. The key idea is to sample from a chain of approximate conditional posteriors, one for each stage of the reverse process, which are estimated in a closed form using the Laplace approximation. Our approximations are motivated by posterior sampling with a Gaussian prior, and inherit its simplicity and efficiency. They are asymptotically consistent and perform well empirically on a variety of contextual bandit problems.
Optimal Design for Human Feedback
Mukherjee, Subhojyoti, Lalitha, Anusha, Kalantari, Kousha, Deshmukh, Aniket, Liu, Ge, Ma, Yifei, Kveton, Branislav
Learning of preference models from human feedback has been central to recent advances in artificial intelligence. Motivated by the cost of obtaining high-quality human annotations, we study the problem of data collection for learning preference models. The key idea in our work is to generalize the optimal design, a method for computing information gathering policies, to ranked lists. To show the generality of our ideas, we study both absolute and relative feedback on the lists. We design efficient algorithms for both settings and analyze them. We prove that our preference model estimators improve with more data and so does the ranking error under the estimators. Finally, we experiment with several synthetic and real-world datasets to show the statistical efficiency of our algorithms.
Experimental Design for Active Transductive Inference in Large Language Models
Mukherjee, Subhojyoti, Lalitha, Anusha, Deshmukh, Aniket, Liu, Ge, Ma, Yifei, Kveton, Branislav
One emergent ability of large language models (LLMs) is that query-specific examples can be included in the prompt at inference time. In this work, we use active learning for adaptive prompt design and call it Active In-context Prompt Design (AIPD). We design the LLM prompt by adaptively choosing few-shot examples from a training set to optimize performance on a test set. The training examples are initially unlabeled and we obtain the label of the most informative ones, which maximally reduces uncertainty in the LLM prediction. We propose two algorithms, GO and SAL, which differ in how the few-shot examples are chosen. We analyze these algorithms in linear models: first GO and then use its equivalence with SAL. We experiment with many different tasks in small, medium-sized, and large language models; and show that GO and SAL outperform other methods for choosing few-shot examples in the LLM prompt at inference time.