Derpanis, Konstantinos G.
Understanding Video Transformers via Universal Concept Discovery
Kowal, Matthew, Dave, Achal, Ambrus, Rares, Gaidon, Adrien, Derpanis, Konstantinos G., Tokmakov, Pavel
This paper studies the problem of concept-based interpretability of transformer representations for videos. Concretely, we seek to explain the decision-making process of video transformers based on high-level, spatiotemporal concepts that are automatically discovered. Prior research on concept-based interpretability has concentrated solely on image-level tasks. Comparatively, video models deal with the added temporal dimension, increasing complexity and posing challenges in identifying dynamic concepts over time. In this work, we systematically address these challenges by introducing the first Video Transformer Concept Discovery (VTCD) algorithm. To this end, we propose an efficient approach for unsupervised identification of units of video transformer representations - concepts, and ranking their importance to the output of a model. The resulting concepts are highly interpretable, revealing spatio-temporal reasoning mechanisms and object-centric representations in unstructured video models. Performing this analysis jointly over a diverse set of supervised and self-supervised representations, we discover that some of these mechanism are universal in video transformers. Finally, we demonstrate that VTCDcan be used to improve model performance for fine-grained tasks.
GePSAn: Generative Procedure Step Anticipation in Cooking Videos
Abdelsalam, Mohamed Ashraf, Rangrej, Samrudhdhi B., Hadji, Isma, Dvornik, Nikita, Derpanis, Konstantinos G., Fazly, Afsaneh
We study the problem of future step anticipation in procedural videos. Given a video of an ongoing procedural activity, we predict a plausible next procedure step described in rich natural language. While most previous work focus on the problem of data scarcity in procedural video datasets, another core challenge of future anticipation is how to account for multiple plausible future realizations in natural settings. This problem has been largely overlooked in previous work. To address this challenge, we frame future step prediction as modelling the distribution of all possible candidates for the next step. Specifically, we design a generative model that takes a series of video clips as input, and generates multiple plausible and diverse candidates (in natural language) for the next step. Following previous work, we side-step the video annotation scarcity by pretraining our model on a large text-based corpus of procedural activities, and then transfer the model to the video domain. Our experiments, both in textual and video domains, show that our model captures diversity in the next step prediction and generates multiple plausible future predictions. Moreover, our model establishes new state-of-the-art results on YouCookII, where it outperforms existing baselines on the next step anticipation. Finally, we also show that our model can successfully transfer from text to the video domain zero-shot, ie, without fine-tuning or adaptation, and produces good-quality future step predictions from video.
SAGE: Saliency-Guided Mixup with Optimal Rearrangements
Ma, Avery, Dvornik, Nikita, Zhang, Ran, Pishdad, Leila, Derpanis, Konstantinos G., Fazly, Afsaneh
Data augmentation is a key element for training accurate models by reducing overfitting and improving generalization. For image classification, the most popular data augmentation techniques range from simple photometric and geometrical transformations, to more complex methods that use visual saliency to craft new training examples. As augmentation methods get more complex, their ability to increase the test accuracy improves, yet, such methods become cumbersome, inefficient and lead to poor out-of-domain generalization, as we show in this paper. This motivates a new augmentation technique that allows for high accuracy gains while being simple, efficient (i.e., minimal computation overhead) and generalizable. To this end, we introduce Saliency-Guided Mixup with Optimal Rearrangements (SAGE), which creates new training examples by rearranging and mixing image pairs using visual saliency as guidance. By explicitly leveraging saliency, SAGE promotes discriminative foreground objects and produces informative new images useful for training. We demonstrate on CIFAR-10 and CIFAR-100 that SAGE achieves better or comparable performance to the state of the art while being more efficient. Additionally, evaluations in the out-of-distribution setting, and few-shot learning on mini-ImageNet, show that SAGE achieves improved generalization performance without trading off robustness.
Unsupervised Learning of Sensorimotor Affordances by Stochastic Future Prediction
Rybkin, Oleh, Pertsch, Karl, Jaegle, Andrew, Derpanis, Konstantinos G., Daniilidis, Kostas
Recently, much progress has been made building systems that can capture static image properties, but natural environments are intrinsically dynamic. For an intelligent agent, perception is responsible not only for capturing features of scene content, but also capturing its \textit{affordances}: how the state of things can change, especially as the result of the agent's actions. We propose an unsupervised method to learn representations of the sensorimotor affordances of an environment. We do so by learning an embedding for stochastic future prediction that is (i) sensitive to scene dynamics and minimally sensitive to static scene content and (ii) compositional in nature, capturing the fact that changes in the environment can be composed to produce a cumulative change. We show that these two properties are sufficient to induce representations that are reusable across visually distinct scenes that share degrees of freedom. We show the applicability of our method to synthetic settings and its potential for understanding more complex, realistic visual settings.