Goto

Collaborating Authors

 Deng, Youjin


Feynman Diagrams as Computational Graphs

arXiv.org Artificial Intelligence

We propose a computational graph representation of high-order Feynman diagrams in Quantum Field Theory (QFT), applicable to any combination of spatial, temporal, momentum, and frequency domains. Utilizing the Dyson-Schwinger and parquet equations, our approach effectively organizes these diagrams into a fractal structure of tensor operations, significantly reducing computational redundancy. This approach not only streamlines the evaluation of complex diagrams but also facilitates an efficient implementation of the field-theoretic renormalization scheme, crucial for enhancing perturbative QFT calculations. Key to this advancement is the integration of Taylor-mode automatic differentiation, a key technique employed in machine learning packages to compute higher-order derivatives efficiently on computational graphs. To operationalize these concepts, we develop a Feynman diagram compiler that optimizes diagrams for various computational platforms, utilizing machine learning frameworks. Demonstrating this methodology's effectiveness, we apply it to the three-dimensional uniform electron gas problem, achieving unprecedented accuracy in calculating the quasiparticle effective mass at metal density. Our work demonstrates the synergy between QFT and machine learning, establishing a new avenue for applying AI techniques to complex quantum many-body problems.


Machine learning of percolation models using graph convolutional neural networks

arXiv.org Artificial Intelligence

Percolation is an important topic in climate, physics, materials science, epidemiology, finance, and so on. Prediction of percolation thresholds with machine learning methods remains challenging. In this paper, we build a powerful graph convolutional neural network to study the percolation in both supervised and unsupervised ways. From a supervised learning perspective, the graph convolutional neural network simultaneously and correctly trains data of different lattice types, such as the square and triangular lattices. For the unsupervised perspective, combining the graph convolutional neural network and the confusion method, the percolation threshold can be obtained by the "W" shaped performance. The finding of this work opens up the possibility of building a more general framework that can probe the percolation-related phenomenon.