Goto

Collaborating Authors

 Deng, Wei


Global-Local Tree Search for Language Guided 3D Scene Generation

arXiv.org Artificial Intelligence

Large Vision-Language Models (VLMs), such as GPT-4, have achieved remarkable success across various fields. However, there are few studies on 3D indoor scene generation with VLMs. This paper considers this task as a planning problem subject to spatial and layout common sense constraints. To solve the problem with a VLM, we propose a new global-local tree search algorithm. Globally, the method places each object sequentially and explores multiple placements during each placement process, where the problem space is represented as a tree. To reduce the depth of the tree, we decompose the scene structure hierarchically, i.e. room level, region level, floor object level, and supported object level. The algorithm independently generates the floor objects in different regions and supported objects placed on different floor objects. Locally, we also decompose the sub-task, the placement of each object, into multiple steps. The algorithm searches the tree of problem space. To leverage the VLM model to produce positions of objects, we discretize the top-down view space as a dense grid and fill each cell with diverse emojis to make to cells distinct. We prompt the VLM with the emoji grid and the VLM produces a reasonable location for the object by describing the position with the name of emojis. The quantitative and qualitative experimental results illustrate our approach generates more plausible 3D scenes than state-of-the-art approaches. Our source code is available at https://github.com/dw-dengwei/TreeSearchGen .


Optimal Stochastic Trace Estimation in Generative Modeling

arXiv.org Machine Learning

Hutchinson estimators are widely employed in training divergence-based likelihoods for diffusion models to ensure optimal transport (OT) properties. However, this estimator often suffers from high variance and scalability concerns. To address these challenges, we investigate Hutch++, an optimal stochastic trace estimator for generative models, designed to minimize training variance while maintaining transport optimality. Hutch++ is particularly effective for handling ill-conditioned matrices with large condition numbers, which commonly arise when high-dimensional data exhibits a low-dimensional structure. To mitigate the need for frequent and costly QR decompositions, we propose practical schemes that balance frequency and accuracy, backed by theoretical guarantees. Our analysis demonstrates that Hutch++ leads to generations of higher quality. Furthermore, this method exhibits effective variance reduction in various applications, including simulations, conditional time series forecasts, and image generation.


IndexTTS: An Industrial-Level Controllable and Efficient Zero-Shot Text-To-Speech System

arXiv.org Artificial Intelligence

Recently, large language model (LLM) based text-to-speech (TTS) systems have gradually become the mainstream in the industry due to their high naturalness and powerful zero-shot voice cloning capabilities.Here, we introduce the IndexTTS system, which is mainly based on the XTTS and Tortoise model. We add some novel improvements. Specifically, in Chinese scenarios, we adopt a hybrid modeling method that combines characters and pinyin, making the pronunciations of polyphonic characters and long-tail characters controllable. We also performed a comparative analysis of the Vector Quantization (VQ) with Finite-Scalar Quantization (FSQ) for codebook utilization of acoustic speech tokens. To further enhance the effect and stability of voice cloning, we introduce a conformer-based speech conditional encoder and replace the speechcode decoder with BigVGAN2. Compared with XTTS, it has achieved significant improvements in naturalness, content consistency, and zero-shot voice cloning. As for the popular TTS systems in the open-source, such as Fish-Speech, CosyVoice2, FireRedTTS and F5-TTS, IndexTTS has a relatively simple training process, more controllable usage, and faster inference speed. Moreover, its performance surpasses that of these systems. Our demos are available at https://index-tts.github.io.


Variational Schr\"odinger Momentum Diffusion

arXiv.org Machine Learning

The momentum Schr\"odinger Bridge (mSB) has emerged as a leading method for accelerating generative diffusion processes and reducing transport costs. However, the lack of simulation-free properties inevitably results in high training costs and affects scalability. To obtain a trade-off between transport properties and scalability, we introduce variational Schr\"odinger momentum diffusion (VSMD), which employs linearized forward score functions (variational scores) to eliminate the dependence on simulated forward trajectories. Our approach leverages a multivariate diffusion process with adaptively transport-optimized variational scores. Additionally, we apply a critical-damping transform to stabilize training by removing the need for score estimations for both velocity and samples. Theoretically, we prove the convergence of samples generated with optimal variational scores and momentum diffusion. Empirical results demonstrate that VSMD efficiently generates anisotropic shapes while maintaining transport efficacy, outperforming overdamped alternatives, and avoiding complex denoising processes. Our approach also scales effectively to real-world data, achieving competitive results in time series and image generation.


Denoising Fisher Training For Neural Implicit Samplers

arXiv.org Artificial Intelligence

Efficient sampling from un-normalized target distributions is pivotal in scientific computing and machine learning. While neural samplers have demonstrated potential with a special emphasis on sampling efficiency, existing neural implicit samplers still have issues such as poor mode covering behavior, unstable training dynamics, and sub-optimal performances. To tackle these issues, in this paper, we introduce Denoising Fisher Training (DFT), a novel training approach for neural implicit samplers with theoretical guarantees. We frame the training problem as an objective of minimizing the Fisher divergence by deriving a tractable yet equivalent loss function, which marks a unique theoretical contribution to assessing the intractable Fisher divergences. DFT is empirically validated across diverse sampling benchmarks, including two-dimensional synthetic distribution, Bayesian logistic regression, and high-dimensional energy-based models (EBMs). Notably, in experiments with high-dimensional EBMs, our best one-step DFT neural sampler achieves results on par with MCMC methods with up to 200 sampling steps, leading to a substantially greater efficiency over 100 times higher. This result not only demonstrates the superior performance of DFT in handling complex high-dimensional sampling but also sheds light on efficient sampling methodologies across broader applications.


Bayesian Federated Learning with Hamiltonian Monte Carlo: Algorithm and Theory

arXiv.org Machine Learning

This work introduces a novel and efficient Bayesian federated learning algorithm, namely, the Federated Averaging stochastic Hamiltonian Monte Carlo (FA-HMC), for parameter estimation and uncertainty quantification. We establish rigorous convergence guarantees of FA-HMC on non-iid distributed data sets, under the strong convexity and Hessian smoothness assumptions. Our analysis investigates the effects of parameter space dimension, noise on gradients and momentum, and the frequency of communication (between the central node and local nodes) on the convergence and communication costs of FA-HMC. Beyond that, we establish the tightness of our analysis by showing that the convergence rate cannot be improved even for continuous FA-HMC process. Moreover, extensive empirical studies demonstrate that FA-HMC outperforms the existing Federated Averaging-Langevin Monte Carlo (FA-LD) algorithm.


Variational Schr\"odinger Diffusion Models

arXiv.org Artificial Intelligence

Schr\"odinger bridge (SB) has emerged as the go-to method for optimizing transportation plans in diffusion models. However, SB requires estimating the intractable forward score functions, inevitably resulting in the costly implicit training loss based on simulated trajectories. To improve the scalability while preserving efficient transportation plans, we leverage variational inference to linearize the forward score functions (variational scores) of SB and restore simulation-free properties in training backward scores. We propose the variational Schr\"odinger diffusion model (VSDM), where the forward process is a multivariate diffusion and the variational scores are adaptively optimized for efficient transport. Theoretically, we use stochastic approximation to prove the convergence of the variational scores and show the convergence of the adaptively generated samples based on the optimal variational scores. Empirically, we test the algorithm in simulated examples and observe that VSDM is efficient in generations of anisotropic shapes and yields straighter sample trajectories compared to the single-variate diffusion. We also verify the scalability of the algorithm in real-world data and achieve competitive unconditional generation performance in CIFAR10 and conditional generation in time series modeling. Notably, VSDM no longer depends on warm-up initializations and has become tuning-friendly in training large-scale experiments.


Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics

arXiv.org Machine Learning

Replica exchange stochastic gradient Langevin dynamics (reSGLD) is an effective sampler for non-convex learning in large-scale datasets. However, the simulation may encounter stagnation issues when the high-temperature chain delves too deeply into the distribution tails. To tackle this issue, we propose reflected reSGLD (r2SGLD): an algorithm tailored for constrained non-convex exploration by utilizing reflection steps within a bounded domain. Theoretically, we observe that reducing the diameter of the domain enhances mixing rates, exhibiting a $\textit{quadratic}$ behavior. Empirically, we test its performance through extensive experiments, including identifying dynamical systems with physical constraints, simulations of constrained multi-modal distributions, and image classification tasks. The theoretical and empirical findings highlight the crucial role of constrained exploration in improving the simulation efficiency.


Can multiple-choice questions really be useful in detecting the abilities of LLMs?

arXiv.org Artificial Intelligence

Multiple-choice questions (MCQs) are widely used in the evaluation of large language models (LLMs) due to their simplicity and efficiency. However, there are concerns about whether MCQs can truly measure LLM's capabilities, particularly in knowledge-intensive scenarios where long-form generation (LFG) answers are required. The misalignment between the task and the evaluation method demands a thoughtful analysis of MCQ's efficacy, which we undertake in this paper by evaluating nine LLMs on four question-answering (QA) datasets in two languages: Chinese and English. We identify a significant issue: LLMs exhibit an order sensitivity in bilingual MCQs, favoring answers located at specific positions, i.e., the first position. We further quantify the gap between MCQs and long-form generation questions (LFGQs) by comparing their direct outputs, token logits, and embeddings. Our results reveal a relatively low correlation between answers from MCQs and LFGQs for identical questions. Additionally, we propose two methods to quantify the consistency and confidence of LLMs' output, which can be generalized to other QA evaluation benchmarks. Notably, our analysis challenges the idea that the higher the consistency, the greater the accuracy. We also find MCQs to be less reliable than LFGQs in terms of expected calibration error. Finally, the misalignment between MCQs and LFGQs is not only reflected in the evaluation performance but also in the embedding space. Our code and models can be accessed at https://github.com/Meetyou-AI-Lab/Can-MC-Evaluate-LLMs.


BlackJAX: Composable Bayesian inference in JAX

arXiv.org Machine Learning

BlackJAX is a library implementing sampling and variational inference algorithms commonly used in Bayesian computation. It is designed for ease of use, speed, and modularity by taking a functional approach to the algorithms' implementation. BlackJAX is written in Python, using JAX to compile and run NumpPy-like samplers and variational methods on CPUs, GPUs, and TPUs. The library integrates well with probabilistic programming languages by working directly with the (un-normalized) target log density function. BlackJAX is intended as a collection of low-level, composable implementations of basic statistical 'atoms' that can be combined to perform well-defined Bayesian inference, but also provides high-level routines for ease of use. It is designed for users who need cutting-edge methods, researchers who want to create complex sampling methods, and people who want to learn how these work.