Goto

Collaborating Authors

 Demir, Begüm


Communication-Efficient Federated Learning Based on Explanation-Guided Pruning for Remote Sensing Image Classification

arXiv.org Artificial Intelligence

Federated learning (FL) is a decentralized machine learning paradigm, where multiple clients collaboratively train a global model by exchanging only model updates with the central server without sharing the local data of clients. Due to the large volume of model updates required to be transmitted between clients and the central server, most FL systems are associated with high transfer costs (i.e., communication overhead). This issue is more critical for operational applications in remote sensing (RS), especially when large-scale RS data is processed and analyzed through FL systems with restricted communication bandwidth. To address this issue, we introduce an explanation-guided pruning strategy for communication-efficient FL in the context of RS image classification. Our pruning strategy is defined based on the layerwise relevance propagation (LRP) driven explanations to: 1) efficiently and effectively identify the most relevant and informative model parameters (to be exchanged between clients and the central server); and 2) eliminate the non-informative ones to minimize the volume of model updates. The experimental results on the BigEarthNet-S2 dataset demonstrate that our strategy effectively reduces the number of shared model updates, while increasing the generalization ability of the global model. The code of this work will be publicly available at https://git.tu-berlin.de/rsim/FL-LRP


Radio Map Prediction from Aerial Images and Application to Coverage Optimization

arXiv.org Artificial Intelligence

In recent years, several studies have explored deep learning algorithms to predict large-scale signal fading, or path loss, in urban communication networks. The goal is to replace costly measurement campaigns, inaccurate statistical models, or computationally expensive ray-tracing simulations with machine learning models that deliver quick and accurate predictions. We focus on predicting path loss radio maps using convolutional neural networks, leveraging aerial images alone or in combination with supplementary height information. Notably, our approach does not rely on explicit classification of environmental objects, which is often unavailable for most locations worldwide. While the prediction of radio maps using complete 3D environmental data is well-studied, the use of only aerial images remains under-explored. We address this gap by showing that state-of-the-art models developed for existing radio map datasets can be effectively adapted to this task, achieving strong performance. Additionally, we introduce a new model that slightly exceeds the performance of the present state-of-the-art with reduced complexity. The trained models are differentiable, and therefore they can be incorporated in various network optimization algorithms. While an extensive discussion is beyond this paper's scope, we demonstrate this through an example optimizing the directivity of base stations in cellular networks via backpropagation to enhance coverage.


Estimating Physical Information Consistency of Channel Data Augmentation for Remote Sensing Images

arXiv.org Artificial Intelligence

The application of data augmentation for deep learning (DL) methods plays an important role in achieving state-of-the-art results in supervised, semi-supervised, and self-supervised image classification. In particular, channel transformations (e.g., solarize, grayscale, brightness adjustments) are integrated into data augmentation pipelines for remote sensing (RS) image classification tasks. However, contradicting beliefs exist about their proper applications to RS images. A common point of critique is that the application of channel augmentation techniques may lead to physically inconsistent spectral data (i.e., pixel signatures). To shed light on the open debate, we propose an approach to estimate whether a channel augmentation technique affects the physical information of RS images. To this end, the proposed approach estimates a score that measures the alignment of a pixel signature within a time series that can be naturally subject to deviations caused by factors such as acquisition conditions or phenological states of vegetation. We compare the scores associated with original and augmented pixel signatures to evaluate the physical consistency. Experimental results on a multi-label image classification task show that channel augmentations yielding a score that exceeds the expected deviation of original pixel signatures can not improve the performance of a baseline model trained without augmentation.


Radio Map Estimation -- An Open Dataset with Directive Transmitter Antennas and Initial Experiments

arXiv.org Artificial Intelligence

Over the last years, several works have explored the application of deep learning algorithms to determine the large-scale signal fading (also referred to as ``path loss'') between transmitter and receiver pairs in urban communication networks. The central idea is to replace costly measurement campaigns, inaccurate statistical models or computationally expensive ray-tracing simulations by machine learning models which, once trained, produce accurate predictions almost instantly. Although the topic has attracted attention from many researchers, there are few open benchmark datasets and codebases that would allow everyone to test and compare the developed methods and algorithms. We take a step towards filling this gap by releasing a publicly available dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources. Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented and the code is made available.


LiT-4-RSVQA: Lightweight Transformer-based Visual Question Answering in Remote Sensing

arXiv.org Artificial Intelligence

Visual question answering (VQA) methods in remote sensing (RS) aim to answer natural language questions with respect to an RS image. Most of the existing methods require a large amount of computational resources, which limits their application in operational scenarios in RS. To address this issue, in this paper we present an effective lightweight transformer-based VQA in RS (LiT-4-RSVQA) architecture for efficient and accurate VQA in RS. Our architecture consists of: i) a lightweight text encoder module; ii) a lightweight image encoder module; iii) a fusion module; and iv) a classification module. The experimental results obtained on a VQA benchmark dataset demonstrate that our proposed LiT-4-RSVQA architecture provides accurate VQA results while significantly reducing the computational requirements on the executing hardware. Our code is publicly available at https://git.tu-berlin.de/rsim/lit4rsvqa.


Transformer-based Multi-Modal Learning for Multi Label Remote Sensing Image Classification

arXiv.org Artificial Intelligence

In this paper, we introduce a novel Synchronized Class Token Fusion (SCT Fusion) architecture in the framework of multi-modal multi-label classification (MLC) of remote sensing (RS) images. The proposed architecture leverages modality-specific attention-based transformer encoders to process varying input modalities, while exchanging information across modalities by synchronizing the special class tokens after each transformer encoder block. The synchronization involves fusing the class tokens with a trainable fusion transformation, resulting in a synchronized class token that contains information from all modalities. As the fusion transformation is trainable, it allows to reach an accurate representation of the shared features among different modalities. Experimental results show the effectiveness of the proposed architecture over single-modality architectures and an early fusion multi-modal architecture when evaluated on a multi-modal MLC dataset. The code of the proposed architecture is publicly available at https://git.tu-berlin.de/rsim/sct-fusion.


Deep Metric Learning-Based Semi-Supervised Regression With Alternate Learning

arXiv.org Artificial Intelligence

This paper introduces a novel deep metric learning-based semi-supervised regression (DML-S2R) method for parameter estimation problems. The proposed DML-S2R method aims to mitigate the problems of insufficient amount of labeled samples without collecting any additional sample with a target value. To this end, it is made up of two main steps: i) pairwise similarity modeling with scarce labeled data; and ii) triplet-based metric learning with abundant unlabeled data. The first step aims to model pairwise sample similarities by using a small number of labeled samples. This is achieved by estimating the target value differences of labeled samples with a Siamese neural network (SNN). The second step aims to learn a triplet-based metric space (in which similar samples are close to each other and dissimilar samples are far apart from each other) when the number of labeled samples is insufficient. This is achieved by employing the SNN of the first step for triplet-based deep metric learning that exploits not only labeled samples but also unlabeled samples. For the end-to-end training of DML-S2R, we investigate an alternate learning strategy for the two steps. Due to this strategy, the encoded information in each step becomes a guidance for learning phase of the other step. The experimental results confirm the success of DML-S2R compared to the state-of-the-art semi-supervised regression methods. The code of the proposed method is publicly available at https://git.tu-berlin.de/rsim/DML-S2R.


A Comparative Study of Deep Learning Loss Functions for Multi-Label Remote Sensing Image Classification

arXiv.org Artificial Intelligence

This paper analyzes and compares different deep learning loss functions in the framework of multi-label remote sensing (RS) image scene classification problems. We consider seven loss functions: 1) cross-entropy loss; 2) focal loss; 3) weighted cross-entropy loss; 4) Hamming loss; 5) Huber loss; 6) ranking loss; and 7) sparseMax loss. All the considered loss functions are analyzed for the first time in RS. After a theoretical analysis, an experimental analysis is carried out to compare the considered loss functions in terms of their: 1) overall accuracy; 2) class imbalance awareness (for which the number of samples associated to each class significantly varies); 3) convexibility and differentiability; and 4) learning efficiency (i.e., convergence speed). On the basis of our analysis, some guidelines are derived for a proper selection of a loss function in multi-label RS scene classification problems.