Goto

Collaborating Authors

 Demekas, Daphne


An analytical model of active inference in the Iterated Prisoner's Dilemma

arXiv.org Artificial Intelligence

This paper addresses a mathematically tractable model of the Prisoner's Dilemma using the framework of active inference. In this work, we design pairs of Bayesian agents that are tracking the joint game state of their and their opponent's choices in an Iterated Prisoner's Dilemma game. The specification of the agents' belief architecture in the form of a partially-observed Markov decision process allows careful and rigourous investigation into the dynamics of two-player gameplay, including the derivation of optimal conditions for phase transitions that are required to achieve certain game-theoretic steady states. We show that the critical time points governing the phase transition are linearly related to each other as a function of learning rate and the reward function. We then investigate the patterns that emerge when varying the agents' learning rates, as well as the relationship between the stochastic and deterministic solutions to the two-agent system.


Spin glass systems as collective active inference

arXiv.org Artificial Intelligence

An open question in the study of emergent behaviour in multi-agent Bayesian systems is the relationship, if any, between individual and collective inference. In this paper we explore the correspondence between generative models that exist at two distinct scales, using spin glass models as a sandbox system to investigate this question. We show that the collective dynamics of a specific type of active inference agent is equivalent to sampling from the stationary distribution of a spin glass system. A collective of specifically-designed active inference agents can thus be described as implementing a form of sampling-based inference (namely, from a Boltzmann machine) at the higher level. However, this equivalence is very fragile, breaking upon simple modifications to the generative models of the individual agents or the nature of their interactions. We discuss the implications of this correspondence and its fragility for the study of multiscale systems composed of Bayesian agents.


pymdp: A Python library for active inference in discrete state spaces

arXiv.org Artificial Intelligence

Active inference is an account of cognition and behavior in complex systems which brings together action, perception, and learning under the theoretical mantle of Bayesian inference. Active inference has seen growing applications in academic research, especially in fields that seek to model human or animal behavior. While in recent years, some of the code arising from the active inference literature has been written in open source languages like Python and Julia, to-date, the most popular software for simulating active inference agents is the DEM toolbox of SPM, a MATLAB library originally developed for the statistical analysis and modelling of neuroimaging data. Increasing interest in active inference, manifested both in terms of sheer number as well as diversifying applications across scientific disciplines, has thus created a need for generic, widely-available, and user-friendly code for simulating active inference in open-source scientific computing languages like Python. The Python package we present here, pymdp (see https://github.com/infer-actively/pymdp), represents a significant step in this direction: namely, we provide the first open-source package for simulating active inference with partially-observable Markov Decision Processes or POMDPs. We review the package's structure and explain its advantages like modular design and customizability, while providing in-text code blocks along the way to demonstrate how it can be used to build and run active inference processes with ease. We developed pymdp to increase the accessibility and exposure of the active inference framework to researchers, engineers, and developers with diverse disciplinary backgrounds. In the spirit of open-source software, we also hope that it spurs new innovation, development, and collaboration in the growing active inference community.