Goto

Collaborating Authors

 Debbah, Mérouane


Towards Zero Touch Networks: Cross-Layer Automated Security Solutions for 6G Wireless Networks

arXiv.org Artificial Intelligence

The transition from 5G to 6G mobile networks necessitates network automation to meet the escalating demands for high data rates, ultra-low latency, and integrated technology. Recently, Zero-Touch Networks (ZTNs), driven by Artificial Intelligence (AI) and Machine Learning (ML), are designed to automate the entire lifecycle of network operations with minimal human intervention, presenting a promising solution for enhancing automation in 5G/6G networks. However, the implementation of ZTNs brings forth the need for autonomous and robust cybersecurity solutions, as ZTNs rely heavily on automation. AI/ML algorithms are widely used to develop cybersecurity mechanisms, but require substantial specialized expertise and encounter model drift issues, posing significant challenges in developing autonomous cybersecurity measures. Therefore, this paper proposes an automated security framework targeting Physical Layer Authentication (PLA) and Cross-Layer Intrusion Detection Systems (CLIDS) to address security concerns at multiple Internet protocol layers. The proposed framework employs drift-adaptive online learning techniques and a novel enhanced Successive Halving (SH)-based Automated ML (AutoML) method to automatically generate optimized ML models for dynamic networking environments. Experimental results illustrate that the proposed framework achieves high performance on the public Radio Frequency (RF) fingerprinting and the Canadian Institute for CICIDS2017 datasets, showcasing its effectiveness in addressing PLA and CLIDS tasks within dynamic and complex networking environments. Furthermore, the paper explores open challenges and research directions in the 5G/6G cybersecurity domain. This framework represents a significant advancement towards fully autonomous and secure 6G networks, paving the way for future innovations in network automation and cybersecurity.


Diffusion Models as Network Optimizers: Explorations and Analysis

arXiv.org Artificial Intelligence

Network optimization is a fundamental challenge in the Internet of Things (IoT) network, often characterized by complex features that make it difficult to solve these problems. Recently, generative diffusion models (GDMs) have emerged as a promising new approach to network optimization, with the potential to directly address these optimization problems. However, the application of GDMs in this field is still in its early stages, and there is a noticeable lack of theoretical research and empirical findings. In this study, we first explore the intrinsic characteristics of generative models. Next, we provide a concise theoretical proof and intuitive demonstration of the advantages of generative models over discriminative models in network optimization. Based on this exploration, we implement GDMs as optimizers aimed at learning high-quality solution distributions for given inputs, sampling from these distributions during inference to approximate or achieve optimal solutions. Specifically, we utilize denoising diffusion probabilistic models (DDPMs) and employ a classifier-free guidance mechanism to manage conditional guidance based on input parameters. We conduct extensive experiments across three challenging network optimization problems. By investigating various model configurations and the principles of GDMs as optimizers, we demonstrate the ability to overcome prediction errors and validate the convergence of generated solutions to optimal solutions. We provide code and data at https://github.com/qiyu3816/DiffSG.


GDSG: Graph Diffusion-based Solution Generator for Optimization Problems in MEC Networks

arXiv.org Artificial Intelligence

Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at http://ieee-dataport.org/13824, as well as the GDSG algorithm codes at https://github.com/qiyu3816/GDSG.


Generative AI for Immersive Communication: The Next Frontier in Internet-of-Senses Through 6G

arXiv.org Artificial Intelligence

Over the past two decades, the Internet-of-Things (IoT) has been a transformative concept, and as we approach 2030, a new paradigm known as the Internet of Senses (IoS) is emerging. Unlike conventional Virtual Reality (VR), IoS seeks to provide multi-sensory experiences, acknowledging that in our physical reality, our perception extends far beyond just sight and sound; it encompasses a range of senses. This article explores existing technologies driving immersive multi-sensory media, delving into their capabilities and potential applications. This exploration includes a comparative analysis between conventional immersive media streaming and a proposed use case that leverages semantic communication empowered by generative Artificial Intelligence (AI). The focal point of this analysis is the substantial reduction in bandwidth consumption by 99.93% in the proposed scheme. Through this comparison, we aim to underscore the practical applications of generative AI for immersive media while addressing the challenges and outlining future trajectories.


Faster and Lighter LLMs: A Survey on Current Challenges and Way Forward

arXiv.org Artificial Intelligence

Despite the impressive performance of LLMs, their widespread adoption faces challenges due to substantial computational and memory requirements during inference. Recent advancements in model compression and system-level optimization methods aim to enhance LLM inference. This survey offers an overview of these methods, emphasizing recent developments. Through experiments on LLaMA(/2)-7B, we evaluate various compression techniques, providing practical insights for efficient LLM deployment in a unified setting. The empirical analysis on LLaMA(/2)-7B highlights the effectiveness of these methods. Drawing from survey insights, we identify current limitations and discuss potential future directions to improve LLM inference efficiency. We release the codebase to reproduce the results presented in this paper at https://github.com/nyunAI/Faster-LLM-Survey


The Falcon Series of Open Language Models

arXiv.org Artificial Intelligence

We introduce the Falcon series: 7B, 40B, and 180B parameters causal decoder-only models trained on a diverse high-quality corpora predominantly assembled from web data. The largest model, Falcon-180B, has been trained on over 3.5 trillion tokens of text--the largest openly documented pretraining run. Falcon-180B significantly outperforms models such as PaLM or Chinchilla, and improves upon concurrently developed models such as LLaMA 2 or Inflection-1. It nears the performance of PaLM-2-Large at a reduced pretraining and inference cost, making it, to our knowledge, one of the three best language models in the world along with GPT-4 and PaLM-2-Large. We report detailed evaluations, as well as a deep dive into the methods and custom tooling employed to pretrain Falcon. Notably, we report on our custom distributed training codebase, allowing us to efficiently pretrain these models on up to 4,096 A100s on cloud AWS infrastructure with limited interconnect. We release a 600B tokens extract of our web dataset, as well as the Falcon-7/40/180B models under a permissive license to foster open-science and accelerate the development of an open ecosystem of large language models.


Semantics-Native Communication with Contextual Reasoning

arXiv.org Artificial Intelligence

Spurred by a huge interest in the post-Shannon communication, it has recently been shown that leveraging semantics can significantly improve the communication effectiveness across many tasks. In this article, inspired by human communication, we propose a novel stochastic model of System 1 semantics-native communication (SNC) for generic tasks, where a speaker has an intention of referring to an entity, extracts the semantics, and communicates its symbolic representation to a target listener. To further reach its full potential, we additionally infuse contextual reasoning into SNC such that the speaker locally and iteratively self-communicates with a virtual agent built on the physical listener's unique way of coding its semantics, i.e., communication context. The resultant System 2 SNC allows the speaker to extract the most effective semantics for its listener. Leveraging the proposed stochastic model, we show that the reliability of System 2 SNC increases with the number of meaningful concepts, and derive the expected semantic representation (SR) bit length which quantifies the extracted effective semantics. It is also shown that System 2 SNC significantly reduces the SR length without compromising communication reliability.


Edge-Native Intelligence for 6G Communications Driven by Federated Learning: A Survey of Trends and Challenges

arXiv.org Artificial Intelligence

The unprecedented surge of data volume in wireless networks empowered with artificial intelligence (AI) opens up new horizons for providing ubiquitous data-driven intelligent services. Traditional cloud-centric machine learning (ML)-based services are implemented by collecting datasets and training models centrally. However, this conventional training technique encompasses two challenges: (i) high communication and energy cost due to increased data communication, (ii) threatened data privacy by allowing untrusted parties to utilise this information. Recently, in light of these limitations, a new emerging technique, coined as federated learning (FL), arose to bring ML to the edge of wireless networks. FL can extract the benefits of data silos by training a global model in a distributed manner, orchestrated by the FL server. FL exploits both decentralised datasets and computing resources of participating clients to develop a generalised ML model without compromising data privacy. In this article, we introduce a comprehensive survey of the fundamentals and enabling technologies of FL. Moreover, an extensive study is presented detailing various applications of FL in wireless networks and highlighting their challenges and limitations. The efficacy of FL is further explored with emerging prospective beyond fifth generation (B5G) and sixth generation (6G) communication systems. The purpose of this survey is to provide an overview of the state-of-the-art of FL applications in key wireless technologies that will serve as a foundation to establish a firm understanding of the topic. Lastly, we offer a road forward for future research directions.


Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications

arXiv.org Machine Learning

Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond. By imbuing intelligence into the network edge, edge nodes can proactively carry out decision-making, and thereby react to local environmental changes and disturbances while experiencing zero communication latency. To achieve this goal, it is essential to cater for high ML inference accuracy at scale under time-varying channel and network dynamics, by continuously exchanging fresh data and ML model updates in a distributed way. Taming this new kind of data traffic boils down to improving the communication efficiency of distributed learning by optimizing communication payload types, transmission techniques, and scheduling, as well as ML architectures, algorithms, and data processing methods. To this end, this article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases.


Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial

arXiv.org Artificial Intelligence

Next-generation wireless networks must support ultra-reliable, low-latency communication and intelligently manage a massive number of Internet of Things (IoT) devices in real-time, within a highly dynamic environment. This need for stringent communication quality-of-service (QoS) requirements as well as mobile edge and core intelligence can only be realized by integrating fundamental notions of artificial intelligence (AI) and machine learning across the wireless infrastructure and end-user devices. In this context, this paper provides a comprehensive tutorial that introduces the main concepts of machine learning, in general, and artificial neural networks (ANNs), in particular, and their potential applications in wireless communications. For this purpose, we present a comprehensive overview on a number of key types of neural networks that include feed-forward, recurrent, spiking, and deep neural networks. For each type of neural network, we present the basic architecture and training procedure, as well as the associated challenges and opportunities. Then, we provide an in-depth overview on the variety of wireless communication problems that can be addressed using ANNs, ranging from communication using unmanned aerial vehicles to virtual reality and edge caching.For each individual application, we present the main motivation for using ANNs along with the associated challenges while also providing a detailed example for a use case scenario and outlining future works that can be addressed using ANNs. In a nutshell, this article constitutes one of the first holistic tutorials on the development of machine learning techniques tailored to the needs of future wireless networks.