DeMers, David
Non-Linear Dimensionality Reduction
DeMers, David, Cottrell, Garrison W.
A method for creating a nonlinear encoder-decoder for multidimensional data with compact representations is presented. The commonly used technique of autoassociation is extended to allow nonlinear representations, and an objective functionwhich penalizes activations of individual hidden units is shown to result in minimum dimensional encodings with respect to allowable error in reconstruction. 1 INTRODUCTION Reducing dimensionality of data with minimal information loss is important for feature extraction, compact coding and computational efficiency. The data can be tranformed into "good" representations for further processing, constraints among feature variables may be identified, and redundancy eliminated. Many algorithms are exponential in the dimensionality of the input, thus even reduction by a single dimension may provide valuable computational savings. Autoassociating feedforward networks with one hidden layer have been shown to extract the principal components of the data (Baldi & Hornik, 1988). Such networks have been used to extract features and develop compact encodings of the data (Cottrell, Munro & Zipser, 1989). Principal Components Analysis projects the data into a linear subspace -email: demers@cs.ucsd.edu
Global Regularization of Inverse Kinematics for Redundant Manipulators
DeMers, David, Kreutz-Delgado, Kenneth
When m n, we say that the manipulator has redundant degrees--of-freedom (dot). The inverse kinematics problem is the following: given a desired workspace location x, find joint variables 0 such that f(O) x. Even when the forward kinematics is known, 255 256 DeMers and Kreutz-Delgado the inverse kinematics for a manipulator is not generically solvable in closed form (Craig. 1986).
Global Regularization of Inverse Kinematics for Redundant Manipulators
DeMers, David, Kreutz-Delgado, Kenneth
When m n, we say that the manipulator has redundant degrees--of -freedom (dot). The inverse kinematics problem is the following: given a desired workspace location x, find joint variables 0 such that f(O) x. Even when the forward kinematics is known, 255 256 DeMers and Kreutz-Delgado the inverse kinematics for a manipulator is not generically solvable in closed form (Craig. 1986).
Non-Linear Dimensionality Reduction
DeMers, David, Cottrell, Garrison W.
A method for creating a nonlinear encoder-decoder for multidimensional data with compact representations is presented. The commonly used technique of autoassociation is extended to allow nonlinear representations, and an objective function which penalizes activations of individual hidden units is shown to result in minimum dimensional encodings with respect to allowable error in reconstruction. 1 INTRODUCTION Reducing dimensionality of data with minimal information loss is important for feature extraction, compact coding and computational efficiency. The data can be tranformed into "good" representations for further processing, constraints among feature variables may be identified, and redundancy eliminated. Many algorithms are exponential in the dimensionality of the input, thus even reduction by a single dimension may provide valuable computational savings. Autoassociating feed forward networks with one hidden layer have been shown to extract the principal components of the data (Baldi & Hornik, 1988). Such networks have been used to extract features and develop compact encodings of the data (Cottrell, Munro & Zipser, 1989). Principal Components Analysis projects the data into a linear subspace -email: demers@cs.ucsd.edu
Learning Global Direct Inverse Kinematics
DeMers, David, Kreutz-Delgado, Kenneth
Learning Global Direct Inverse Kinematics
DeMers, David, Kreutz-Delgado, Kenneth