Dathathri, Sumanth
Consensus, dissensus and synergy between clinicians and specialist foundation models in radiology report generation
Tanno, Ryutaro, Barrett, David G. T., Sellergren, Andrew, Ghaisas, Sumedh, Dathathri, Sumanth, See, Abigail, Welbl, Johannes, Singhal, Karan, Azizi, Shekoofeh, Tu, Tao, Schaekermann, Mike, May, Rhys, Lee, Roy, Man, SiWai, Ahmed, Zahra, Mahdavi, Sara, Matias, Yossi, Barral, Joelle, Eslami, Ali, Belgrave, Danielle, Natarajan, Vivek, Shetty, Shravya, Kohli, Pushmeet, Huang, Po-Sen, Karthikesalingam, Alan, Ktena, Ira
Radiology reports are an instrumental part of modern medicine, informing key clinical decisions such as diagnosis and treatment. The worldwide shortage of radiologists, however, restricts access to expert care and imposes heavy workloads, contributing to avoidable errors and delays in report delivery. While recent progress in automated report generation with vision-language models offer clear potential in ameliorating the situation, the path to real-world adoption has been stymied by the challenge of evaluating the clinical quality of AI-generated reports. In this study, we build a state-of-the-art report generation system for chest radiographs, $\textit{Flamingo-CXR}$, by fine-tuning a well-known vision-language foundation model on radiology data. To evaluate the quality of the AI-generated reports, a group of 16 certified radiologists provide detailed evaluations of AI-generated and human written reports for chest X-rays from an intensive care setting in the United States and an inpatient setting in India. At least one radiologist (out of two per case) preferred the AI report to the ground truth report in over 60$\%$ of cases for both datasets. Amongst the subset of AI-generated reports that contain errors, the most frequently cited reasons were related to the location and finding, whereas for human written reports, most mistakes were related to severity and finding. This disparity suggested potential complementarity between our AI system and human experts, prompting us to develop an assistive scenario in which Flamingo-CXR generates a first-draft report, which is subsequently revised by a clinician. This is the first demonstration of clinician-AI collaboration for report writing, and the resultant reports are assessed to be equivalent or preferred by at least one radiologist to reports written by experts alone in 80$\%$ of in-patient cases and 60$\%$ of intensive care cases.
Scaling Language Models: Methods, Analysis & Insights from Training Gopher
Rae, Jack W., Borgeaud, Sebastian, Cai, Trevor, Millican, Katie, Hoffmann, Jordan, Song, Francis, Aslanides, John, Henderson, Sarah, Ring, Roman, Young, Susannah, Rutherford, Eliza, Hennigan, Tom, Menick, Jacob, Cassirer, Albin, Powell, Richard, Driessche, George van den, Hendricks, Lisa Anne, Rauh, Maribeth, Huang, Po-Sen, Glaese, Amelia, Welbl, Johannes, Dathathri, Sumanth, Huang, Saffron, Uesato, Jonathan, Mellor, John, Higgins, Irina, Creswell, Antonia, McAleese, Nat, Wu, Amy, Elsen, Erich, Jayakumar, Siddhant, Buchatskaya, Elena, Budden, David, Sutherland, Esme, Simonyan, Karen, Paganini, Michela, Sifre, Laurent, Martens, Lena, Li, Xiang Lorraine, Kuncoro, Adhiguna, Nematzadeh, Aida, Gribovskaya, Elena, Donato, Domenic, Lazaridou, Angeliki, Mensch, Arthur, Lespiau, Jean-Baptiste, Tsimpoukelli, Maria, Grigorev, Nikolai, Fritz, Doug, Sottiaux, Thibault, Pajarskas, Mantas, Pohlen, Toby, Gong, Zhitao, Toyama, Daniel, d'Autume, Cyprien de Masson, Li, Yujia, Terzi, Tayfun, Mikulik, Vladimir, Babuschkin, Igor, Clark, Aidan, Casas, Diego de Las, Guy, Aurelia, Jones, Chris, Bradbury, James, Johnson, Matthew, Hechtman, Blake, Weidinger, Laura, Gabriel, Iason, Isaac, William, Lockhart, Ed, Osindero, Simon, Rimell, Laura, Dyer, Chris, Vinyals, Oriol, Ayoub, Kareem, Stanway, Jeff, Bennett, Lorrayne, Hassabis, Demis, Kavukcuoglu, Koray, Irving, Geoffrey
Natural language communication is core to intelligence, as it allows ideas to be efficiently shared between humans or artificially intelligent systems. The generality of language allows us to express many intelligence tasks as taking in natural language input and producing natural language output. Autoregressive language modelling -- predicting the future of a text sequence from its past -- provides a simple yet powerful objective that admits formulation of numerous cognitive tasks. At the same time, it opens the door to plentiful training data: the internet, books, articles, code, and other writing. However this training objective is only an approximation to any specific goal or application, since we predict everything in the sequence rather than only the aspects we care about. Yet if we treat the resulting models with appropriate caution, we believe they will be a powerful tool to capture some of the richness of human intelligence. Using language models as an ingredient towards intelligence contrasts with their original application: transferring text over a limited-bandwidth communication channel. Shannon's Mathematical Theory of Communication (Shannon, 1948) linked the statistical modelling of natural language with compression, showing that measuring the cross entropy of a language model is equivalent to measuring its compression rate.
Challenges in Detoxifying Language Models
Welbl, Johannes, Glaese, Amelia, Uesato, Jonathan, Dathathri, Sumanth, Mellor, John, Hendricks, Lisa Anne, Anderson, Kirsty, Kohli, Pushmeet, Coppin, Ben, Huang, Po-Sen
Large language models (LM) generate remarkably fluent text and can be efficiently adapted across NLP tasks. Measuring and guaranteeing the quality of generated text in terms of safety is imperative for deploying LMs in the real world; to this end, prior work often relies on automatic evaluation of LM toxicity. We critically discuss this approach, evaluate several toxicity mitigation strategies with respect to both automatic and human evaluation, and analyze consequences of toxicity mitigation in terms of model bias and LM quality. We demonstrate that while basic intervention strategies can effectively optimize previously established automatic metrics on the RealToxicityPrompts dataset, this comes at the cost of reduced LM coverage for both texts about, and dialects of, marginalized groups. Additionally, we find that human raters often disagree with high automatic toxicity scores after strong toxicity reduction interventions -- highlighting further the nuances involved in careful evaluation of LM toxicity.
Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming
Dathathri, Sumanth, Dvijotham, Krishnamurthy, Kurakin, Alexey, Raghunathan, Aditi, Uesato, Jonathan, Bunel, Rudy, Shankar, Shreya, Steinhardt, Jacob, Goodfellow, Ian, Liang, Percy, Kohli, Pushmeet
Convex relaxations have emerged as a promising approach for verifying desirable properties of neural networks like robustness to adversarial perturbations. Widely used Linear Programming (LP) relaxations only work well when networks are trained to facilitate verification. This precludes applications that involve verification-agnostic networks, i.e., networks not specially trained for verification. On the other hand, semidefinite programming (SDP) relaxations have successfully be applied to verification-agnostic networks, but do not currently scale beyond small networks due to poor time and space asymptotics. In this work, we propose a first-order dual SDP algorithm that (1) requires memory only linear in the total number of network activations, (2) only requires a fixed number of forward/backward passes through the network per iteration. By exploiting iterative eigenvector methods, we express all solver operations in terms of forward and backward passes through the network, enabling efficient use of hardware like GPUs/TPUs. For two verification-agnostic networks on MNIST and CIFAR-10, we significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively. We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
Robust Constrained Reinforcement Learning for Continuous Control with Model Misspecification
Mankowitz, Daniel J., Calian, Dan A., Jeong, Rae, Paduraru, Cosmin, Heess, Nicolas, Dathathri, Sumanth, Riedmiller, Martin, Mann, Timothy
Many real-world physical control systems are required to satisfy constraints upon deployment. Furthermore, real-world systems are often subject to effects such as non-stationarity, wear-and-tear, uncalibrated sensors and so on. Such effects effectively perturb the system dynamics and can cause a policy trained successfully in one domain to perform poorly when deployed to a perturbed version of the same domain. This can affect a policy's ability to maximize future rewards as well as the extent to which it satisfies constraints. We refer to this as constrained model misspecification. We present an algorithm with theoretical guarantees that mitigates this form of misspecification, and showcase its performance in multiple Mujoco tasks from the Real World Reinforcement Learning (RWRL) suite.
Plug-and-Play Conversational Models
Madotto, Andrea, Ishii, Etsuko, Lin, Zhaojiang, Dathathri, Sumanth, Fung, Pascale
There has been considerable progress made towards conversational models that generate coherent and fluent responses; however, this often involves training large language models on large dialogue datasets, such as Reddit. These large conversational models provide little control over the generated responses, and this control is further limited in the absence of annotated conversational datasets for attribute specific generation that can be used for fine-tuning the model. In this paper, we first propose and evaluate plug-and-play methods for controllable response generation, which does not require dialogue specific datasets and does not rely on fine-tuning a large model. While effective, the decoding procedure induces considerable computational overhead, rendering the conversational model unsuitable for interactive usage. To overcome this, we introduce an approach that does not require further computation at decoding time, while also does not require any fine-tuning of a large language model. We demonstrate, through extensive automatic and human evaluation, a high degree of control over the generated conversational responses with regard to multiple desired attributes, while being fluent.