Goto

Collaborating Authors

 Dasdan, Ali


Experience with GitHub Copilot for Developer Productivity at Zoominfo

arXiv.org Artificial Intelligence

This paper presents a comprehensive evaluation of GitHub Copilot's deployment and impact on developer productivity at Zoominfo, a leading Go-To-Market (GTM) Intelligence Platform. We describe our systematic four-phase approach to evaluating and deploying GitHub Copilot across our engineering organization, involving over 400 developers. Our analysis combines both quantitative metrics, focusing on acceptance rates of suggestions given by GitHub Copilot and qualitative feedback given by developers through developer satisfaction surveys. The results show an average acceptance rate of 33% for suggestions and 20% for lines of code, with high developer satisfaction scores of 72%. We also discuss language-specific performance variations, limitations, and lessons learned from this medium-scale enterprise deployment. Our findings contribute to the growing body of knowledge about AI-assisted software development in enterprise settings.


Leveraging LLMs to Enable Natural Language Search on Go-to-market Platforms

arXiv.org Artificial Intelligence

Enterprise searches require users to have complex knowledge of queries, configurations, and metadata, rendering it difficult for them to access information as needed. Most go-to-market (GTM) platforms utilize advanced search, an interface that enables users to filter queries by various fields using categories or keywords, which, historically, however, has proven to be exceedingly cumbersome, as users are faced with seemingly hundreds of options, fields, and buttons. Consequently, querying with natural language has long been ideal, a notion further empowered by Large Language Models (LLMs). In this paper, we implement and evaluate a solution for the Zoominfo product for sellers, which prompts the LLM with natural language, producing search fields through entity extraction that are then converted into a search query. The intermediary search fields offer numerous advantages for each query, including the elimination of syntax errors, simpler ground truths, and an intuitive format for the LLM to interpret. We paired this pipeline with many advanced prompt engineering strategies, featuring an intricate system message, few-shot prompting, chain-of-thought (CoT) reasoning, and execution refinement. Furthermore, we manually created the ground truth for 500+ natural language queries, enabling the supervised fine-tuning of Llama-3-8B-Instruct and the introduction of sophisticated numerical metrics. Comprehensive experiments with closed, open source, and fine-tuned LLM models were conducted through exact, Jaccard, cosine, and semantic similarity on individual search entities to demonstrate the efficacy of our approach. Overall, the most accurate closed model had an average accuracy of 97% per query, with only one field performing under 90%, with comparable results observed from the fine-tuned models.


Multi-Touch Attribution Based Budget Allocation in Online Advertising

arXiv.org Artificial Intelligence

Budget allocation in online advertising deals with distributing the campaign (insertion order) level budgets to different sub-campaigns which employ different targeting criteria and may perform differently in terms of return-on-investment (ROI). In this paper, we present the efforts at Turn on how to best allocate campaign budget so that the advertiser or campaign-level ROI is maximized. To do this, it is crucial to be able to correctly determine the performance of sub-campaigns. This determination is highly related to the action-attribution problem, i.e. to be able to find out the set of ads, and hence the sub-campaigns that provided them to a user, that an action should be attributed to. For this purpose, we employ both last-touch (last ad gets all credit) and multi-touch (many ads share the credit) attribution methodologies. We present the algorithms deployed at Turn for the attribution problem, as well as their parallel implementation on the large advertiser performance datasets. We conclude the paper with our empirical comparison of last-touch and multi-touch attribution-based budget allocation in a real online advertising setting.