Das, Swagatam
On Robust Cross Domain Alignment
Chakrabarty, Anish, Basu, Arkaprabha, Das, Swagatam
The Gromov-Wasserstein (GW) distance is an effective measure of alignment between distributions supported on distinct ambient spaces. Calculating essentially the mutual departure from isometry, it has found vast usage in domain translation and network analysis. It has long been shown to be vulnerable to contamination in the underlying measures. All efforts to introduce robustness in GW have been inspired by similar techniques in optimal transport (OT), which predominantly advocate partial mass transport or unbalancing. In contrast, the cross-domain alignment problem being fundamentally different from OT, demands specific solutions to tackle diverse applications and contamination regimes. Deriving from robust statistics, we discuss three contextually novel techniques to robustify GW and its variants. For each method, we explore metric properties and robustness guarantees along with their co-dependencies and individual relations with the GW distance.
On the Universal Statistical Consistency of Expansive Hyperbolic Deep Convolutional Neural Networks
Ghosh, Sagar, Bose, Kushal, Das, Swagatam
The emergence of Deep Convolutional Neural Networks (DCNNs) has been a pervasive tool for accomplishing widespread applications in computer vision. Despite its potential capability to capture intricate patterns inside the data, the underlying embedding space remains Euclidean and primarily pursues contractive convolution. Several instances can serve as a precedent for the exacerbating performance of DCNNs. The recent advancement of neural networks in the hyperbolic spaces gained traction, incentivizing the development of convolutional deep neural networks in the hyperbolic space. In this work, we propose Hyperbolic DCNN based on the Poincar\'{e} Disc. The work predominantly revolves around analyzing the nature of expansive convolution in the context of the non-Euclidean domain. We further offer extensive theoretical insights pertaining to the universal consistency of the expansive convolution in the hyperbolic space. Several simulations were performed not only on the synthetic datasets but also on some real-world datasets. The experimental results reveal that the hyperbolic convolutional architecture outperforms the Euclidean ones by a commendable margin.
Self-Tuning Spectral Clustering for Speaker Diarization
Raghav, Nikhil, Gupta, Avisek, Sahidullah, Md, Das, Swagatam
Spectral clustering has proven effective in grouping speech representations for speaker diarization tasks, although post-processing the affinity matrix remains difficult due to the need for careful tuning before constructing the Laplacian. In this study, we present a novel pruning algorithm to create a sparse affinity matrix called \emph{spectral clustering on p-neighborhood retained affinity matrix} (SC-pNA). Our method improves on node-specific fixed neighbor selection by allowing a variable number of neighbors, eliminating the need for external tuning data as the pruning parameters are derived directly from the affinity matrix. SC-pNA does so by identifying two clusters in every row of the initial affinity matrix, and retains only the top $p\%$ similarity scores from the cluster containing larger similarities. Spectral clustering is performed subsequently, with the number of clusters determined as the maximum eigengap. Experimental results on the challenging DIHARD-III dataset highlight the superiority of SC-pNA, which is also computationally more efficient than existing auto-tuning approaches.
TCG CREST System Description for the Second DISPLACE Challenge
Raghav, Nikhil, Saha, Subhajit, Sahidullah, Md, Das, Swagatam
In this report, we describe the speaker diarization (SD) and language diarization (LD) systems developed by our team for the Second DISPLACE Challenge, 2024. Our contributions were dedicated to Track 1 for SD and Track 2 for LD in multilingual and multi-speaker scenarios. We investigated different speech enhancement techniques, voice activity detection (VAD) techniques, unsupervised domain categorization, and neural embedding extraction architectures. We also exploited the fusion of various embedding extraction models. We implemented our system with the open-source SpeechBrain toolkit. Our final submissions use spectral clustering for both the speaker and language diarization. We achieve about $7\%$ relative improvement over the challenge baseline in Track 1. We did not obtain improvement over the challenge baseline in Track 2.
Fortifying Fully Convolutional Generative Adversarial Networks for Image Super-Resolution Using Divergence Measures
Basu, Arkaprabha, Bose, Kushal, Mullick, Sankha Subhra, Chakrabarty, Anish, Das, Swagatam
Super-Resolution (SR) is a time-hallowed image processing problem that aims to improve the quality of a Low-Resolution (LR) sample up to the standard of its High-Resolution (HR) counterpart. We aim to address this by introducing Super-Resolution Generator (SuRGe), a fully-convolutional Generative Adversarial Network (GAN)-based architecture for SR. We show that distinct convolutional features obtained at increasing depths of a GAN generator can be optimally combined by a set of learnable convex weights to improve the quality of generated SR samples. In the process, we employ the Jensen-Shannon and the Gromov-Wasserstein losses respectively between the SR-HR and LR-SR pairs of distributions to further aid the generator of SuRGe to better exploit the available information in an attempt to improve SR. Moreover, we train the discriminator of SuRGe with the Wasserstein loss with gradient penalty, to primarily prevent mode collapse. The proposed SuRGe, as an end-to-end GAN workflow tailor-made for super-resolution, offers improved performance while maintaining low inference time. The efficacy of SuRGe is substantiated by its superior performance compared to 18 state-of-the-art contenders on 10 benchmark datasets. A Low Resolution (LR) image sacrifices information of its High Resolution (HR) counterpart in favor of general utility such as displaying or editing in smaller screens, low storage requirement, and fast transmission. Super-resolution attempts to recover the original HR copy from a LR input.
Utilizing Maximum Mean Discrepancy Barycenter for Propagating the Uncertainty of Value Functions in Reinforcement Learning
Roy, Srinjoy, Das, Swagatam
Accounting for the uncertainty of value functions boosts exploration in Reinforcement Learning (RL). Our work introduces Maximum Mean Discrepancy Q-Learning (MMD-QL) to improve Wasserstein Q-Learning (WQL) for uncertainty propagation during Temporal Difference (TD) updates. MMD-QL uses the MMD barycenter for this purpose, as MMD provides a tighter estimate of closeness between probability measures than the Wasserstein distance. Firstly, we establish that MMD-QL is Probably Approximately Correct in MDP (PAC-MDP) under the average loss metric. Concerning the accumulated rewards, experiments on tabular environments show that MMD-QL outperforms WQL and other algorithms. Secondly, we incorporate deep networks into MMD-QL to create MMD Q-Network (MMD-QN). Making reasonable assumptions, we analyze the convergence rates of MMD-QN using function approximation. Empirical results on challenging Atari games demonstrate that MMD-QN performs well compared to benchmark deep RL algorithms, highlighting its effectiveness in handling large state-action spaces.
Exploring Green AI for Audio Deepfake Detection
Saha, Subhajit, Sahidullah, Md, Das, Swagatam
The state-of-the-art audio deepfake detectors leveraging deep neural networks exhibit impressive recognition performance. Nonetheless, this advantage is accompanied by a significant carbon footprint. This is mainly due to the use of high-performance computing with accelerators and high training time. Studies show that average deep NLP model produces around 626k lbs of CO\textsubscript{2} which is equivalent to five times of average US car emission at its lifetime. This is certainly a massive threat to the environment. To tackle this challenge, this study presents a novel framework for audio deepfake detection that can be seamlessly trained using standard CPU resources. Our proposed framework utilizes off-the-shelve self-supervised learning (SSL) based models which are pre-trained and available in public repositories. In contrast to existing methods that fine-tune SSL models and employ additional deep neural networks for downstream tasks, we exploit classical machine learning algorithms such as logistic regression and shallow neural networks using the SSL embeddings extracted using the pre-trained model. Our approach shows competitive results compared to the commonly used high-carbon footprint approaches. In experiments with the ASVspoof 2019 LA dataset, we achieve a 0.90\% equal error rate (EER) with less than 1k trainable model parameters. To encourage further research in this direction and support reproducible results, the Python code will be made publicly accessible following acceptance. Github: https://github.com/sahasubhajit/Speech-Spoofing-
Concurrent Density Estimation with Wasserstein Autoencoders: Some Statistical Insights
Chakrabarty, Anish, Basu, Arkaprabha, Das, Swagatam
Variational Autoencoders (VAEs) have been a pioneering force in the realm of deep generative models. Amongst its legions of progenies, Wasserstein Autoencoders (WAEs) stand out in particular due to the dual offering of heightened generative quality and a strong theoretical backbone. WAEs consist of an encoding and a decoding network forming a bottleneck with the prime objective of generating new samples resembling the ones it was catered to. In the process, they aim to achieve a target latent representation of the encoded data. Our work is an attempt to offer a theoretical understanding of the machinery behind WAEs. From a statistical viewpoint, we pose the problem as concurrent density estimation tasks based on neural network-induced transformations. This allows us to establish deterministic upper bounds on the realized errors WAEs commit. We also analyze the propagation of these stochastic errors in the presence of adversaries. As a result, both the large sample properties of the reconstructed distribution and the resilience of WAE models are explored.
HyPE-GT: where Graph Transformers meet Hyperbolic Positional Encodings
Bose, Kushal, Das, Swagatam
Graph Transformers (GTs) facilitate the comprehension of graph-structured data by calculating the self-attention of node pairs without considering node position information. To address this limitation, we introduce an innovative and efficient framework that introduces Positional Encodings (PEs) into the Transformer, generating a set of learnable positional encodings in the hyperbolic space, a non-Euclidean domain. This approach empowers us to explore diverse options for optimal selection of PEs for specific downstream tasks, leveraging hyperbolic neural networks or hyperbolic graph convolutional networks. Additionally, we repurpose these positional encodings to mitigate the impact of over-smoothing in deep Graph Neural Networks (GNNs). Comprehensive experiments on molecular benchmark datasets, co-author, and co-purchase networks substantiate the effectiveness of hyperbolic positional encodings in enhancing the performance of deep GNNs. Transformers (GTs) are earmarked as one of the milestones for modelling the interactions between the node [1] which occurs due to the recursive neighborhood aggregation, over-squashing [2], an information bottleneck caused by the exponential growth of information while increasing the size of the receptive field, and bounded expressive power [3], [4]. Graph Transformers confront the limitations by evaluating pair-wise self-attention without considering the structural inductive bias which causes the loss of positional information of the nodes. As an effective solution, the positional encodings as vectors are integrated with the node features to make the respective nodes topologically aware in the graph. Recently, many efforts were made to generate effective positional encodings for the GTs like spectral decomposition-based learnable encoding [5], structure-aware PEs generated from the rooted subgraph or subtree of the nodes [6], encoding the structural dependency [7], random walk-based learnable positional encodings [8] and many more. The positional encodings derived from existing works suffer from several key limitations like Spectral Attention Network (SAN) which generates learnable positional encodings by spectral decomposition of the Laplacian matrix.
Robust and Automatic Data Clustering: Dirichlet Process meets Median-of-Means
Basu, Supratik, Choudhury, Jyotishka Ray, Paul, Debolina, Das, Swagatam
Clustering stands as one of the most prominent challenges within the realm of unsupervised machine learning. Among the array of centroid-based clustering algorithms, the classic $k$-means algorithm, rooted in Lloyd's heuristic, takes center stage as one of the extensively employed techniques in the literature. Nonetheless, both $k$-means and its variants grapple with noteworthy limitations. These encompass a heavy reliance on initial cluster centroids, susceptibility to converging into local minima of the objective function, and sensitivity to outliers and noise in the data. When confronted with data containing noisy or outlier-laden observations, the Median-of-Means (MoM) estimator emerges as a stabilizing force for any centroid-based clustering framework. On a different note, a prevalent constraint among existing clustering methodologies resides in the prerequisite knowledge of the number of clusters prior to analysis. Utilizing model-based methodologies, such as Bayesian nonparametric models, offers the advantage of infinite mixture models, thereby circumventing the need for such requirements. Motivated by these facts, in this article, we present an efficient and automatic clustering technique by integrating the principles of model-based and centroid-based methodologies that mitigates the effect of noise on the quality of clustering while ensuring that the number of clusters need not be specified in advance. Statistical guarantees on the upper bound of clustering error, and rigorous assessment through simulated and real datasets suggest the advantages of our proposed method over existing state-of-the-art clustering algorithms.