Goto

Collaborating Authors

 Daras, Petros


LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty

arXiv.org Artificial Intelligence

We present LoTUS, a novel Machine Unlearning (MU) method that eliminates the influence of training samples from pre-trained models, avoiding retraining from scratch. LoTUS smooths the prediction probabilities of the model -- up to an information theoretic bound -- mitigating its over-confidence that stems from data memorization. We evaluate LoTUS on the Transformer and ResNet18 models, against eight baseline methods, on five public datasets. Beyond established MU benchmarks, we evaluate unlearning on a large-scale dataset (ImageNet1k) which deters retraining, simulating real-world conditions. Moreover, we introduce the novel Retrain-Free Jensen-Shannon Divergence (RF-JSD) metric to enable evaluation under real-world conditions. Experimental results show that LoTUS outperforms state-of-the-art methods in terms of both efficiency and effectiveness. Code: https://github.com/cspartalis/LoTUS.


Comprehensive Comparison of Deep Learning Models for Lung and COVID-19 Lesion Segmentation in CT scans

arXiv.org Artificial Intelligence

Recently there has been an explosion in the use of Deep Learning (DL) methods for medical image segmentation. However the field's reliability is hindered by the lack of a common base of reference for accuracy/performance evaluation and the fact that previous research uses different datasets for evaluation. In this paper, an extensive comparison of DL models for lung and COVID-19 lesion segmentation in Computerized Tomography (CT) scans is presented, which can also be used as a benchmark for testing medical image segmentation models. Four DL architectures (Unet, Linknet, FPN, PSPNet) are combined with 25 randomly initialized and pretrained encoders (variations of VGG, DenseNet, ResNet, ResNext, DPN, MobileNet, Xception, Inception-v4, EfficientNet), to construct 200 tested models. Three experimental setups are conducted for lung segmentation, lesion segmentation and lesion segmentation using the original lung masks. A public COVID-19 dataset with 100 CT scan images (80 for train, 20 for validation) is used for training/validation and a different public dataset consisting of 829 images from 9 CT scan volumes for testing. Multiple findings are provided including the best architecture-encoder models for each experiment as well as mean Dice results for each experiment, architecture and encoder independently. Finally, the upper bounds improvements when using lung masks as a preprocessing step or when using pretrained models are quantified. The source code and 600 pretrained models for the three experiments are provided, suitable for fine-tuning in experimental setups without GPU capabilities.


HUMAN4D: A Human-Centric Multimodal Dataset for Motions and Immersive Media

arXiv.org Artificial Intelligence

We introduce HUMAN4D, a large and multimodal 4D dataset that contains a variety of human activities simultaneously captured by a professional marker-based MoCap, a volumetric capture and an audio recording system. By capturing 2 female and $2$ male professional actors performing various full-body movements and expressions, HUMAN4D provides a diverse set of motions and poses encountered as part of single- and multi-person daily, physical and social activities (jumping, dancing, etc.), along with multi-RGBD (mRGBD), volumetric and audio data. Despite the existence of multi-view color datasets captured with the use of hardware (HW) synchronization, to the best of our knowledge, HUMAN4D is the first and only public resource that provides volumetric depth maps with high synchronization precision due to the use of intra- and inter-sensor HW-SYNC. Moreover, a spatio-temporally aligned scanned and rigged 3D character complements HUMAN4D to enable joint research on time-varying and high-quality dynamic meshes. We provide evaluation baselines by benchmarking HUMAN4D with state-of-the-art human pose estimation and 3D compression methods. For the former, we apply 2D and 3D pose estimation algorithms both on single- and multi-view data cues. For the latter, we benchmark open-source 3D codecs on volumetric data respecting online volumetric video encoding and steady bit-rates. Furthermore, qualitative and quantitative visual comparison between mesh-based volumetric data reconstructed in different qualities showcases the available options with respect to 4D representations. HUMAN4D is introduced to the computer vision and graphics research communities to enable joint research on spatio-temporally aligned pose, volumetric, mRGBD and audio data cues. The dataset and its code are available https://tofis.github.io/myurls/human4d.


On Coordinate Decoding for Keypoint Estimation Tasks

arXiv.org Artificial Intelligence

Scope of Reproducibility A series of 2D (and 3D) keypoint estimation tasks are built upon heatmap coordinate representation, i.e. a probability map that allows for learnable and spatially aware encoding and decoding of keypoint coordinates on grids, even allowing for sub-pixel coordinate accuracy. In this report, we aim to reproduce the findings of DARK [1] that investigated the 2D heatmap representation by highlighting the importance of the encoding of the ground truth heatmap and the decoding of the predicted heatmap to keypoint coordinates. The authors claim that a) a more principled distribution-aware coordinate decoding method overcomes the limitations of the standard techniques widely used in the literature, and b), that the reconstruction of heatmaps from ground-truth coordinates by generating accurate and continuous (non-quantized) heatmap distributions lead to unbiased model training, contrary to the standard coordinate encoding process that quantizes the keypoint coordinates on the resolution of the input image grid. Methodology To reproduce DARK, we thoroughly studied and followed the official implementation provided by the authors. We partially used the publicly available code and integrated it to a model development kit to accelerate the implementation and execution of our experiments.


DeepMoCap: Deep Optical Motion Capture Using Multiple Depth Sensors and Retro-Reflectors

arXiv.org Artificial Intelligence

In this paper, a marker-based, single-person optical motion capture method (DeepMoCap) is proposed using multiple spatio-temporally aligned infrared-depth sensors and retro-reflective straps and patches (reflectors). DeepMoCap explores motion capture by automatically localizing and labeling reflectors on depth images and, subsequently, on 3D space. Introducing a non-parametric representation to encode the temporal correlation among pairs of colorized depthmaps and 3D optical flow frames, a multi-stage Fully Convolutional Network (FCN) architecture is proposed to jointly learn reflector locations and their temporal dependency among sequential frames. The extracted reflector 2D locations are spatially mapped in 3D space, resulting in robust 3D optical data extraction. The subject's motion is efficiently captured by applying a template-based fitting technique on the extracted optical data. Two datasets have been created and made publicly available for evaluation purposes; one comprising multi-view depth and 3D optical flow annotated images (DMC2.5D), and a second, consisting of spatio-temporally aligned multi-view depth images along with skeleton, inertial and ground truth MoCap data (DMC3D). The FCN model outperforms its competitors on the DMC2.5D dataset using 2D Percentage of Correct Keypoints (PCK) metric, while the motion capture outcome is evaluated against RGB-D and inertial data fusion approaches on DMC3D, outperforming the next best method by 4.5% in total 3D PCK accuracy.


Examining Deep Learning Architectures for Crime Classification and Prediction

arXiv.org Machine Learning

Abstract--In this paper, a detailed study on crime classification and prediction using deep learning architectures is presented. We examine the effectiveness of deep learning algorithms on this domain and provide recommendations for designing and training deep learning systems for predicting crime areas, using open data from police reports. Having as training data time-series of crime types per location, a comparative study of 10 state-of-the-art methods against 3 different deep learning configurations is conducted. In our experiments with five publicly available datasets, we demonstrate that the deep learning-based methods consistently outperform the existing best-performing methods. Moreover, we evaluate the effectiveness of different parameters in the deep learning architectures and give insights for configuring them in order to achieve improved performance in crime classification and finally crime prediction. REDICTIVE policing is the use of analytical techniques to identify either likely places of future crime scenes or past crime perpetrators, by applying statistical predictions [29]. As a crime typically involves a perpetrator and a target and occurs at a certain place and time, techniques of predictive policing need to answer: a) who will commit a crime, b) who will be offended, c) what type of crime, d) in which location and e) at what time a new crime will take place. This work does not focus on the victim and the offender, but on the prediction of occurrence of a certain crime type per location and time using past data. The ultimate goal, in a policing context, is the selection of the top areas in the city for the prioritization of law enforcement resources per department. One of the most challenging issues of police departments is to have accurate crime forecasts to dynamically deploy patrols and other resources so as to improve deterring of crime occurrence and police response times. Routine activity theory [8] suggests that most crimes take place when three conditions are met: a motivated offender, a suitable victim and lack of victim protection. The rational choice theory [9], suggests that prospective criminal weights the gain of successfully committing the crime against the probability of being caught and makes a rational choice whether to actually commit the crime or not. Both theories agree that a crime takes place when a person willing to commit it has an opportunity to do so. Daras are with the Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece.