Goto

Collaborating Authors

 Danks, David


ION-C: Integration of Overlapping Networks via Constraints

arXiv.org Machine Learning

In many causal learning problems, variables of interest are often not all measured over the same observations, but are instead distributed across multiple datasets with overlapping variables. Tillman et al. (2008) presented the first algorithm for enumerating the minimal equivalence class of ground-truth DAGs consistent with all input graphs by exploiting local independence relations, called ION. In this paper, this problem is formulated as a more computationally efficient answer set programming (ASP) problem, which we call ION-C, and solved with the ASP system clingo. The ION-C algorithm was run on random synthetic graphs with varying sizes, densities, and degrees of overlap between subgraphs, with overlap having the largest impact on runtime, number of solution graphs, and agreement within the output set. To validate ION-C on real-world data, we ran the algorithm on overlapping graphs learned from data from two successive iterations of the European Social Survey (ESS), using a procedure for conducting joint independence tests to prevent inconsistencies in the input.


Identification and Mitigating Bias in Quantum Machine Learning

arXiv.org Artificial Intelligence

As quantum machine learning (QML) emerges as a promising field at the intersection of quantum computing and artificial intelligence, it becomes crucial to address the biases and challenges that arise from the unique nature of quantum systems. This research includes work on identification, diagnosis, and response to biases in Quantum Machine Learning. This paper aims to provide an overview of three key topics: How does bias unique to Quantum Machine Learning look? Why and how can it occur? What can and should be done about it?


Bias Mitigation via Compensation: A Reinforcement Learning Perspective

arXiv.org Artificial Intelligence

As AI increasingly integrates with human decision-making, we must carefully consider interactions between the two. In particular, current approaches focus on optimizing individual agent actions but often overlook the nuances of collective intelligence. Group dynamics might require that one agent (e.g., the AI system) compensate for biases and errors in another agent (e.g., the human), but this compensation should be carefully developed. We provide a theoretical framework for algorithmic compensation that synthesizes game theory and reinforcement learning principles to demonstrate the natural emergence of deceptive outcomes from the continuous learning dynamics of agents. We provide simulation results involving Markov Decision Processes (MDP) learning to interact. This work then underpins our ethical analysis of the conditions in which AI agents should adapt to biases and behaviors of other agents in dynamic and complex decision-making environments. Overall, our approach addresses the nuanced role of strategic deception of humans, challenging previous assumptions about its detrimental effects. We assert that compensation for others' biases can enhance coordination and ethical alignment: strategic deception, when ethically managed, can positively shape human-AI interactions.


Application of the NIST AI Risk Management Framework to Surveillance Technology

arXiv.org Artificial Intelligence

This study offers an in-depth analysis of the application and implications of the National Institute of Standards and Technology's AI Risk Management Framework (NIST AI RMF) within the domain of surveillance technologies, particularly facial recognition technology. Given the inherently high-risk and consequential nature of facial recognition systems, our research emphasizes the critical need for a structured approach to risk management in this sector. The paper presents a detailed case study demonstrating the utility of the NIST AI RMF in identifying and mitigating risks that might otherwise remain unnoticed in these technologies. Our primary objective is to develop a comprehensive risk management strategy that advances the practice of responsible AI utilization in feasible, scalable ways. We propose a six-step process tailored to the specific challenges of surveillance technology that aims to produce a more systematic and effective risk management practice. This process emphasizes continual assessment and improvement to facilitate companies in managing AI-related risks more robustly and ensuring ethical and responsible deployment of AI systems. These insights contribute to the evolving discourse on AI governance and risk management, highlighting areas for future refinement and development in frameworks like the NIST AI RMF. Surveillance technologies are increasingly widespread in both public and private spaces, often being developed and deployed with little engagement from relevant stakeholders. Most notably, the individuals subject to the surveillance technology are rarely included in creating that technology. As an illustration of both prominence and controversy, one may consider the AI system developed by Clearview AI Inc. to monitor and record the activities of individuals and groups, including rapid face identification. Their system has come under close scrutiny for the ways that the organization scraped images and training data from the Internet; the company is currently under investigation in multiple jurisdictions for scraping billions of images from social media sites without users' consent [1, 2], and other companies like Facebook, Twitter, Venmo, and Google have issued cease and desist letters citing violations of their terms of service [3].


Commercial AI, Conflict, and Moral Responsibility: A theoretical analysis and practical approach to the moral responsibilities associated with dual-use AI technology

arXiv.org Artificial Intelligence

This paper presents a theoretical analysis and practical approach to the moral responsibilities when developing AI systems for non-military applications that may nonetheless be used for conflict applications. We argue that AI represents a form of crossover technology that is different from previous historical examples of dual- or multi-use technology as it has a multiplicative effect across other technologies. As a result, existing analyses of ethical responsibilities around dual-use technologies do not necessarily work for AI systems. We instead argue that stakeholders involved in the AI system lifecycle are morally responsible for uses of their systems that are reasonably foreseeable. The core idea is that an agent's moral responsibility for some action is not necessarily determined by their intentions alone; we must also consider what the agent could reasonably have foreseen to be potential outcomes of their action, such as the potential use of a system in conflict even when it is not designed for that. In particular, we contend that it is reasonably foreseeable that: (1) civilian AI systems will be applied to active conflict, including conflict support activities, (2) the use of civilian AI systems in conflict will impact applications of the law of armed conflict, and (3) crossover AI technology will be applied to conflicts that fall short of armed conflict. Given these reasonably foreseeably outcomes, we present three technically feasible actions that developers of civilian AIs can take to potentially mitigate their moral responsibility: (a) establishing systematic approaches to multi-perspective capability testing, (b) integrating digital watermarking in model weight matrices, and (c) utilizing monitoring and reporting mechanisms for conflict-related AI applications.


Beyond Behaviorist Representational Harms: A Plan for Measurement and Mitigation

arXiv.org Artificial Intelligence

Algorithmic harms are commonly categorized as either allocative or representational. This study specifically addresses the latter, focusing on an examination of current definitions of representational harms to discern what is included and what is not. This analysis motivates our expansion beyond behavioral definitions to encompass harms to cognitive and affective states. The paper outlines high-level requirements for measurement: identifying the necessary expertise to implement this approach and illustrating it through a case study. Our work highlights the unique vulnerabilities of large language models to perpetrating representational harms, particularly when these harms go unmeasured and unmitigated. The work concludes by presenting proposed mitigations and delineating when to employ them. The overarching aim of this research is to establish a framework for broadening the definition of representational harms and to translate insights from fairness research into practical measurement and mitigation praxis.


Fairness Vs. Personalization: Towards Equity in Epistemic Utility

arXiv.org Artificial Intelligence

The applications of personalized recommender systems are rapidly expanding: encompassing social media, online shopping, search engine results, and more. These systems offer a more efficient way to navigate the vast array of items available. However, alongside this growth, there has been increased recognition of the potential for algorithmic systems to exhibit and perpetuate biases, risking unfairness in personalized domains. In this work, we explicate the inherent tension between personalization and conventional implementations of fairness. As an alternative, we propose equity to achieve fairness in the context of epistemic utility. We provide a mapping between goals and practical implementations and detail policy recommendations across key stakeholders to forge a path towards achieving fairness in personalized systems.


Dynamic Certification for Autonomous Systems

arXiv.org Artificial Intelligence

Autonomous systems are often deployed in complex sociotechnical environments, such as public roads, where they must behave safely and securely. Unlike many traditionally engineered systems, autonomous systems are expected to behave predictably in varying "open world" environmental contexts that cannot be fully specified formally. As a result, assurance about autonomous systems requires us to develop new certification methods and mathematical tools that can bound the uncertainty engendered by these diverse deployment scenarios, rather than relying on static tools.


Causal Discovery from Subsampled Time Series Data by Constraint Optimization

arXiv.org Artificial Intelligence

This paper focuses on causal structure estimation from time series data in which measurements are obtained at a coarser timescale than the causal timescale of the underlying system. Previous work has shown that such subsampling can lead to significant errors about the system's causal structure if not properly taken into account. In this paper, we first consider the search for the system timescale causal structures that correspond to a given measurement timescale structure. We provide a constraint satisfaction procedure whose computational performance is several orders of magnitude better than previous approaches. We then consider finite-sample data as input, and propose the first constraint optimization approach for recovering the system timescale causal structure. This algorithm optimally recovers from possible conflicts due to statistical errors. More generally, these advances allow for a robust and non-parametric estimation of system timescale causal structures from subsampled time series data.


Rate-Agnostic (Causal) Structure Learning

Neural Information Processing Systems

Causal structure learning from time series data is a major scientific challenge. Existing algorithms assume that measurements occur sufficiently quickly; more precisely, they assume that the system and measurement timescales are approximately equal. In many scientific domains, however, measurements occur at a significantly slower rate than the underlying system changes. Moreover, the size of the mismatch between timescales is often unknown. This paper provides three distinct causal structure learning algorithms, all of which discover all dynamic graphs that could explain the observed measurement data as arising from undersampling at some rate. That is, these algorithms all learn causal structure without assuming any particular relation between the measurement and system timescales; they are thus rate-agnostic. We apply these algorithms to data from simulations. The results provide insight into the challenge of undersampling.