Dam, Tuan
Power Mean Estimation in Stochastic Monte-Carlo Tree_Search
Dam, Tuan, Maillard, Odalric-Ambrym, Kaufmann, Emilie
Monte-Carlo Tree Search (MCTS) is a widely-used strategy for online planning that combines Monte-Carlo sampling with forward tree search. Its success relies on the Upper Confidence bound for Trees (UCT) algorithm, an extension of the UCB method for multi-arm bandits. However, the theoretical foundation of UCT is incomplete due to an error in the logarithmic bonus term for action selection, leading to the development of Fixed-Depth-MCTS with a polynomial exploration bonus to balance exploration and exploitation~\citep{shah2022journal}. Both UCT and Fixed-Depth-MCTS suffer from biased value estimation: the weighted sum underestimates the optimal value, while the maximum valuation overestimates it~\citep{coulom2006efficient}. The power mean estimator offers a balanced solution, lying between the average and maximum values. Power-UCT~\citep{dam2019generalized} incorporates this estimator for more accurate value estimates but its theoretical analysis remains incomplete. This paper introduces Stochastic-Power-UCT, an MCTS algorithm using the power mean estimator and tailored for stochastic MDPs. We analyze its polynomial convergence in estimating root node values and show that it shares the same convergence rate of $\mathcal{O}(n^{-1/2})$, with $n$ is the number of visited trajectories, as Fixed-Depth-MCTS, with the latter being a special case of the former. Our theoretical results are validated with empirical tests across various stochastic MDP environments.
Monte-Carlo tree search with uncertainty propagation via optimal transport
Dam, Tuan, Stenger, Pascal, Schneider, Lukas, Pajarinen, Joni, D'Eramo, Carlo, Maillard, Odalric-Ambrym
This paper introduces a novel backup strategy for Monte-Carlo Tree Search (MCTS) designed for highly stochastic and partially observable Markov decision processes. We adopt a probabilistic approach, modeling both value and action-value nodes as Gaussian distributions. We introduce a novel backup operator that computes value nodes as the Wasserstein barycenter of their action-value children nodes; thus, propagating the uncertainty of the estimate across the tree to the root node. We study our novel backup operator when using a novel combination of $L^1$-Wasserstein barycenter with $\alpha$-divergence, by drawing a notable connection to the generalized mean backup operator. We complement our probabilistic backup operator with two sampling strategies, based on optimistic selection and Thompson sampling, obtaining our Wasserstein MCTS algorithm. We provide theoretical guarantees of asymptotic convergence to the optimal policy, and an empirical evaluation on several stochastic and partially observable environments, where our approach outperforms well-known related baselines.
Convex Regularization in Monte-Carlo Tree Search
Dam, Tuan, D'Eramo, Carlo, Peters, Jan, Pajarinen, Joni
Monte-Carlo planning and Reinforcement Learning (RL) are essential to sequential decision making. The recent AlphaGo and AlphaZero algorithms have shown how to successfully combine these two paradigms in order to solve large scale sequential decision problems. These methodologies exploit a variant of the well-known UCT algorithm to trade off exploitation of good actions and exploration of unvisited states, but their empirical success comes at the cost of poor sample-efficiency and high computation time. In this paper, we overcome these limitations by considering convex regularization in Monte-Carlo Tree Search (MCTS), which has been successfully used in RL to efficiently drive exploration. First, we introduce a unifying theory on the use of generic convex regularizers in MCTS, deriving the regret analysis and providing guarantees of exponential convergence rate. Second, we exploit our theoretical framework to introduce novel regularized backup operators for MCTS, based on the relative entropy of the policy update, and on the Tsallis entropy of the policy. Finally, we empirically evaluate the proposed operators in AlphaGo and AlphaZero on problems of increasing dimensionality and branching factor, from a toy problem to several Atari games, showing their superiority w.r.t. representative baselines.