Dai, Rui
RoboNurse-VLA: Robotic Scrub Nurse System based on Vision-Language-Action Model
Li, Shunlei, Wang, Jin, Dai, Rui, Ma, Wanyu, Ng, Wing Yin, Hu, Yingbai, Li, Zheng
In modern healthcare, the demand for autonomous robotic assistants has grown significantly, particularly in the operating room, where surgical tasks require precision and reliability. Robotic scrub nurses have emerged as a promising solution to improve efficiency and reduce human error during surgery. However, challenges remain in terms of accurately grasping and handing over surgical instruments, especially when dealing with complex or difficult objects in dynamic environments. In this work, we introduce a novel robotic scrub nurse system, RoboNurse-VLA, built on a Vision-Language-Action (VLA) model by integrating the Segment Anything Model 2 (SAM 2) and the Llama 2 language model. The proposed RoboNurse-VLA system enables highly precise grasping and handover of surgical instruments in real-time based on voice commands from the surgeon. Leveraging state-of-the-art vision and language models, the system can address key challenges for object detection, pose optimization, and the handling of complex and difficult-to-grasp instruments. Through extensive evaluations, RoboNurse-VLA demonstrates superior performance compared to existing models, achieving high success rates in surgical instrument handovers, even with unseen tools and challenging items. This work presents a significant step forward in autonomous surgical assistance, showcasing the potential of integrating VLA models for real-world medical applications. More details can be found at https://robonurse-vla.github.io.
HYPERmotion: Learning Hybrid Behavior Planning for Autonomous Loco-manipulation
Wang, Jin, Dai, Rui, Wang, Weijie, Rossini, Luca, Ruscelli, Francesco, Tsagarakis, Nikos
Enabling robots to autonomously perform hybrid motions in diverse environments can be beneficial for long-horizon tasks such as material handling, household chores, and work assistance. This requires extensive exploitation of intrinsic motion capabilities, extraction of affordances from rich environmental information, and planning of physical interaction behaviors. Despite recent progress has demonstrated impressive humanoid whole-body control abilities, they struggle to achieve versatility and adaptability for new tasks. In this work, we propose HYPERmotion, a framework that learns, selects and plans behaviors based on tasks in different scenarios. We combine reinforcement learning with whole-body optimization to generate motion for 38 actuated joints and create a motion library to store the learned skills. We apply the planning and reasoning features of the large language models (LLMs) to complex loco-manipulation tasks, constructing a hierarchical task graph that comprises a series of primitive behaviors to bridge lower-level execution with higher-level planning. By leveraging the interaction of distilled spatial geometry and 2D observation with a visual language model (VLM) to ground knowledge into a robotic morphology selector to choose appropriate actions in single- or dual-arm, legged or wheeled locomotion. Experiments in simulation and real-world show that learned motions can efficiently adapt to new tasks, demonstrating high autonomy from free-text commands in unstructured scenes. Videos and website: hy-motion.github.io/
JOADAA: joint online action detection and action anticipation
Guermal, Mohammed, Bremond, Francois, Dai, Rui, Ali, Abid
Action anticipation involves forecasting future actions by connecting past events to future ones. However, this reasoning ignores the real-life hierarchy of events which is considered to be composed of three main parts: past, present, and future. We argue that considering these three main parts and their dependencies could improve performance. On the other hand, online action detection is the task of predicting actions in a streaming manner. In this case, one has access only to the past and present information. Therefore, in online action detection (OAD) the existing approaches miss semantics or future information which limits their performance. To sum up, for both of these tasks, the complete set of knowledge (past-present-future) is missing, which makes it challenging to infer action dependencies, therefore having low performances. To address this limitation, we propose to fuse both tasks into a single uniform architecture. By combining action anticipation and online action detection, our approach can cover the missing dependencies of future information in online action detection. This method referred to as JOADAA, presents a uniform model that jointly performs action anticipation and online action detection. We validate our proposed model on three challenging datasets: THUMOS'14, which is a sparsely annotated dataset with one action per time step, CHARADES, and Multi-THUMOS, two densely annotated datasets with more complex scenarios. JOADAA achieves SOTA results on these benchmarks for both tasks.
Moderately Distributional Exploration for Domain Generalization
Dai, Rui, Zhang, Yonggang, Fang, Zhen, Han, Bo, Tian, Xinmei
Domain generalization (DG) aims to tackle the distribution shift between training domains and unknown target domains. Generating new domains is one of the most effective approaches, yet its performance gain depends on the distribution discrepancy between the generated and target domains. Distributionally robust optimization is promising to tackle distribution discrepancy by exploring domains in an uncertainty set. However, the uncertainty set may be overwhelmingly large, leading to low-confidence prediction in DG. It is because a large uncertainty set could introduce domains containing semantically different factors from training domains. To address this issue, we propose to perform a $\textbf{mo}$derately $\textbf{d}$istributional $\textbf{e}$xploration (MODE) for domain generalization. Specifically, MODE performs distribution exploration in an uncertainty $\textit{subset}$ that shares the same semantic factors with the training domains. We show that MODE can endow models with provable generalization performance on unknown target domains. The experimental results show that MODE achieves competitive performance compared to state-of-the-art baselines.
CTRN: Class-Temporal Relational Network for Action Detection
Dai, Rui, Das, Srijan, Bremond, Francois
Action detection is an essential and challenging task, especially for densely labelled datasets of untrimmed videos. There are many real-world challenges in those datasets, such as composite action, co-occurring action, and high temporal variation of instance duration. For handling these challenges, we propose to explore both the class and temporal relations of detected actions. In this work, we introduce an end-to-end network: Class-Temporal Relational Network (CTRN). It contains three key components: (1) The Representation Transform Module filters the class-specific features from the mixed representations to build a graph structured data. We evaluate CTRN on three challenging densely labelled datasets and achieve state-of-the-art performance, reflecting the effectiveness and robustness of our method. Action detection is a challenging computer vision problem which targets at finding precise temporal boundaries of actions occurring in an untrimmed video. For instance, action detection algorithms on popular datasets like THUMOS Jiang et al. (2014) and ActivityNet Caba Heilbron et al. (2015) generally learn representations for single actions in a video.
VPN++: Rethinking Video-Pose embeddings for understanding Activities of Daily Living
Das, Srijan, Dai, Rui, Yang, Di, Bremond, Francois
Abstract--Many attempts have been made towards combining RGB and 3D poses for the recognition of Activities of Daily Living (ADL). ADL may look very similar and often necessitate to model fine-grained details to distinguish them. Because the recent 3D ConvNets are too rigid to capture the subtle visual patterns across an action, this research direction is dominated by methods combining RGB and 3D Poses. But the cost of computing 3D poses from RGB stream is high in the absence of appropriate sensors. This limits the usage of aforementioned approaches in real-world applications requiring low latency. Then, how to best take advantage of 3D Poses for recognizing ADL? To this end, we propose an extension of a pose driven attention mechanism: Video-Pose Network (VPN), exploring two distinct directions. One is to transfer the Pose knowledge into RGB through a feature-level distillation and the other towards mimicking pose driven attention through an attention-level distillation. Finally, these two approaches are integrated into a single model, we call VPN . We show that VPN is not only effective but also provides a high speed up and high resilience to noisy Poses. VPN, with or without 3D Poses, outperforms the representative baselines on 4 public datasets.
Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction with Navigation Data
Dai, Rui, Xu, Shenkun, Gu, Qian, Ji, Chenguang, Liu, Kaikui
Traffic forecasting has recently attracted increasing interest due to the popularity of online navigation services, ridesharing and smart city projects. Owing to the non-stationary nature of road traffic, forecasting accuracy is fundamentally limited by the lack of contextual information. To address this issue, we propose the Hybrid Spatio-Temporal Graph Convolutional Network (H-STGCN), which is able to "deduce" future travel time by exploiting the data of upcoming traffic volume. Specifically, we propose an algorithm to acquire the upcoming traffic volume from an online navigation engine. Taking advantage of the piecewise-linear flow-density relationship, a novel transformer structure converts the upcoming volume into its equivalent in travel time. We combine this signal with the commonly-utilized travel-time signal, and then apply graph convolution to capture the spatial dependency. Particularly, we construct a compound adjacency matrix which reflects the innate traffic proximity. We conduct extensive experiments on real-world datasets. The results show that H-STGCN remarkably outperforms state-of-the-art methods in various metrics, especially for the prediction of non-recurring congestion.