Goto

Collaborating Authors

 Dahlinger, Philipp


Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations

arXiv.org Artificial Intelligence

Many engineering systems require accurate simulations of complex physical systems. Yet, analytical solutions are only available for simple problems, necessitating numerical approximations such as the Finite Element Method (FEM). The cost and accuracy of the FEM scale with the resolution of the underlying computational mesh. To balance computational speed and accuracy meshes with adaptive resolution are used, allocating more resources to critical parts of the geometry. Currently, practitioners often resort to hand-crafted meshes, which require extensive expert knowledge and are thus costly to obtain. Our approach, Adaptive Meshing By Expert Reconstruction (AMBER), views mesh generation as an imitation learning problem. AMBER combines a graph neural network with an online data acquisition scheme to predict the projected sizing field of an expert mesh on a given intermediate mesh, creating a more accurate subsequent mesh. This iterative process ensures efficient and accurate imitation of expert mesh resolutions on arbitrary new geometries during inference. We experimentally validate AMBER on heuristic 2D meshes and 3D meshes provided by a human expert, closely matching the provided demonstrations and outperforming a single-step CNN baseline.


Latent Task-Specific Graph Network Simulators

arXiv.org Artificial Intelligence

Simulating dynamic physical interactions is a critical challenge across multiple scientific domains, with applications ranging from robotics to material science. For mesh-based simulations, Graph Network Simulators (GNSs) pose an efficient alternative to traditional physics-based simulators. Their inherent differentiability and speed make them particularly well-suited for inverse design problems. Yet, adapting to new tasks from limited available data is an important aspect for real-world applications that current methods struggle with. We frame mesh-based simulation as a meta-learning problem and use a recent Bayesian meta-learning method to improve GNSs adaptability to new scenarios by leveraging context data and handling uncertainties. Our approach, latent task-specific graph network simulator, uses non-amortized task posterior approximations to sample latent descriptions of unknown system properties. Additionally, we leverage movement primitives for efficient full trajectory prediction, effectively addressing the issue of accumulating errors encountered by previous auto-regressive methods. We validate the effectiveness of our approach through various experiments, performing on par with or better than established baseline methods. Movement primitives further allow us to accommodate various types of context data, as demonstrated through the utilization of point clouds during inference. By combining GNSs with meta-learning, we bring them closer to real-world applicability, particularly in scenarios with smaller datasets.


Information-Theoretic Trust Regions for Stochastic Gradient-Based Optimization

arXiv.org Artificial Intelligence

Stochastic gradient-based optimization is crucial to optimize neural networks. While popular approaches heuristically adapt the step size and direction by rescaling gradients, a more principled approach to improve optimizers requires second-order information. Such methods precondition the gradient using the objective's Hessian. Yet, computing the Hessian is usually expensive and effectively using second-order information in the stochastic gradient setting is non-trivial. We propose using Information-Theoretic Trust Region Optimization (arTuRO) for improved updates with uncertain second-order information. By modeling the network parameters as a Gaussian distribution and using a Kullback-Leibler divergence-based trust region, our approach takes bounded steps accounting for the objective's curvature and uncertainty in the parameters. Before each update, it solves the trust region problem for an optimal step size, resulting in a more stable and faster optimization process. We approximate the diagonal elements of the Hessian from stochastic gradients using a simple recursive least squares approach, constructing a model of the expected Hessian over time using only first-order information. We show that arTuRO combines the fast convergence of adaptive moment-based optimization with the generalization capabilities of SGD.


Swarm Reinforcement Learning For Adaptive Mesh Refinement

arXiv.org Artificial Intelligence

Adaptive Mesh Refinement (AMR) enhances the Finite Element Method, an important technique for simulating complex problems in engineering, by dynamically refining mesh regions, enabling a favorable trade-off between computational speed and simulation accuracy. Classical methods for AMR depend on heuristics or expensive error estimators, hindering their use for complex simulations. Recent learning-based AMR methods tackle these issues, but so far scale only to simple toy examples. We formulate AMR as a novel Adaptive Swarm Markov Decision Process in which a mesh is modeled as a system of simple collaborating agents that may split into multiple new agents. This framework allows for a spatial reward formulation that simplifies the credit assignment problem, which we combine with Message Passing Networks to propagate information between neighboring mesh elements. We experimentally validate our approach, Adaptive Swarm Mesh Refinement (ASMR), on challenging refinement tasks. Our approach learns reliable and efficient refinement strategies that can robustly generalize to different domains during inference. Additionally, it achieves a speedup of up to $2$ orders of magnitude compared to uniform refinements in more demanding simulations. We outperform learned baselines and heuristics, achieving a refinement quality that is on par with costly error-based oracle AMR strategies.


A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models

arXiv.org Artificial Intelligence

Variational inference with Gaussian mixture models (GMMs) enables learning of highly tractable yet multi-modal approximations of intractable target distributions with up to a few hundred dimensions. The two currently most effective methods for GMM-based variational inference, VIPS and iBayes-GMM, both employ independent natural gradient updates for the individual components and their weights. We show for the first time, that their derived updates are equivalent, although their practical implementations and theoretical guarantees differ. We identify several design choices that distinguish both approaches, namely with respect to sample selection, natural gradient estimation, stepsize adaptation, and whether trust regions are enforced or the number of components adapted. We argue that for both approaches, the quality of the learned approximations can heavily suffer from the respective design choices: By updating the individual components using samples from the mixture model, iBayes-GMM often fails to produce meaningful updates to low-weight components, and by using a zero-order method for estimating the natural gradient, VIPS scales badly to higher-dimensional problems. Furthermore, we show that information-geometric trust-regions (used by VIPS) are effective even when using first-order natural gradient estimates, and often outperform the improved Bayesian learning rule (iBLR) update used by iBayes-GMM. We systematically evaluate the effects of design choices and show that a hybrid approach significantly outperforms both prior works. Along with this work, we publish our highly modular and efficient implementation for natural gradient variational inference with Gaussian mixture models, which supports 432 different combinations of design choices, facilitates the reproduction of all our experiments, and may prove valuable for the practitioner.