Goto

Collaborating Authors

 Dahleh, Munther


Finite Sample Analysis of Tensor Decomposition for Learning Mixtures of Linear Systems

arXiv.org Machine Learning

We study the problem of learning mixtures of linear dynamical systems (MLDS) from input-output data. This mixture setting allows us to leverage observations from related dynamical systems to improve the estimation of individual models. Building on spectral methods for mixtures of linear regressions, we propose a moment-based estimator that uses tensor decomposition to estimate the impulse response of component models of the mixture. The estimator improves upon existing tensor decomposition approaches for MLDS by utilizing the entire length of the observed trajectories. We provide sample complexity bounds for estimating MLDS in the presence of noise, in terms of both $N$ (number of trajectories) and $T$ (trajectory length), and demonstrate the performance of our estimator through simulations.


WeatherFormer: A Pretrained Encoder Model for Learning Robust Weather Representations from Small Datasets

arXiv.org Machine Learning

This paper introduces WeatherFormer, a transformer encoder-based model designed to learn robust weather features from minimal observations. It addresses the challenge of modeling complex weather dynamics from small datasets, a bottleneck for many prediction tasks in agriculture, epidemiology, and climate science. WeatherFormer was pretrained on a large pretraining dataset comprised of 39 years of satellite measurements across the Americas. With a novel pretraining task and fine-tuning, WeatherFormer achieves state-of-the-art performance in county-level soybean yield prediction and influenza forecasting. Technical innovations include a unique spatiotemporal encoding that captures geographical, annual, and seasonal variations, adapting the transformer architecture to continuous weather data, and a pretraining strategy to learn representations that are robust to missing weather features. This paper for the first time demonstrates the effectiveness of pretraining large transformer encoder models for weather-dependent applications across multiple domains.


Sample Efficient Reinforcement Learning with Partial Dynamics Knowledge

arXiv.org Machine Learning

The problem of sample complexity of online reinforcement learning is often studied in the literature without taking into account any partial knowledge about the system dynamics that could potentially accelerate the learning process. In this paper, we study the sample complexity of online Q-learning methods when some prior knowledge about the dynamics is available or can be learned efficiently. We focus on systems that evolve according to an additive disturbance model of the form $S_{h+1} = f(S_h, A_h) + W_h$, where $f$ represents the underlying system dynamics, and $W_h$ are unknown disturbances independent of states and actions. In the setting of finite episodic Markov decision processes with $S$ states, $A$ actions, and episode length $H$, we present an optimistic Q-learning algorithm that achieves $\tilde{\mathcal{O}}(\text{Poly}(H)\sqrt{T})$ regret under perfect knowledge of $f$, where $T$ is the total number of interactions with the system. This is in contrast to the typical $\tilde{\mathcal{O}}(\text{Poly}(H)\sqrt{SAT})$ regret for existing Q-learning methods. Further, if only a noisy estimate $\hat{f}$ of $f$ is available, our method can learn an approximately optimal policy in a number of samples that is independent of the cardinalities of state and action spaces. The sub-optimality gap depends on the approximation error $\hat{f}-f$, as well as the Lipschitz constant of the corresponding optimal value function. Our approach does not require modeling of the transition probabilities and enjoys the same memory complexity as model-free methods.


SAMoSSA: Multivariate Singular Spectrum Analysis with Stochastic Autoregressive Noise

arXiv.org Machine Learning

The well-established practice of time series analysis involves estimating deterministic, non-stationary trend and seasonality components followed by learning the residual stochastic, stationary components. Recently, it has been shown that one can learn the deterministic non-stationary components accurately using multivariate Singular Spectrum Analysis (mSSA) in the absence of a correlated stationary component; meanwhile, in the absence of deterministic non-stationary components, the Autoregressive (AR) stationary component can also be learnt readily, e.g. via Ordinary Least Squares (OLS). However, a theoretical underpinning of multi-stage learning algorithms involving both deterministic and stationary components has been absent in the literature despite its pervasiveness. We resolve this open question by establishing desirable theoretical guarantees for a natural two-stage algorithm, where mSSA is first applied to estimate the non-stationary components despite the presence of a correlated stationary AR component, which is subsequently learned from the residual time series. We provide a finite-sample forecasting consistency bound for the proposed algorithm, SAMoSSA, which is data-driven and thus requires minimal parameter tuning. To establish theoretical guarantees, we overcome three hurdles: (i) we characterize the spectra of Page matrices of stable AR processes, thus extending the analysis of mSSA; (ii) we extend the analysis of AR process identification in the presence of arbitrary bounded perturbations; (iii) we characterize the out-of-sample or forecasting error, as opposed to solely considering model identification. Through representative empirical studies, we validate the superior performance of SAMoSSA compared to existing baselines. Notably, SAMoSSA's ability to account for AR noise structure yields improvements ranging from 5% to 37% across various benchmark datasets.


Causal Matrix Completion

arXiv.org Machine Learning

Matrix completion is the study of recovering an underlying matrix from a sparse subset of noisy observations. Traditionally, it is assumed that the entries of the matrix are "missing completely at random" (MCAR), i.e., each entry is revealed at random, independent of everything else, with uniform probability. This is likely unrealistic due to the presence of "latent confounders", i.e., unobserved factors that determine both the entries of the underlying matrix and the missingness pattern in the observed matrix. For example, in the context of movie recommender systems -- a canonical application for matrix completion -- a user who vehemently dislikes horror films is unlikely to ever watch horror films. In general, these confounders yield "missing not at random" (MNAR) data, which can severely impact any inference procedure that does not correct for this bias. We develop a formal causal model for matrix completion through the language of potential outcomes, and provide novel identification arguments for a variety of causal estimands of interest. We design a procedure, which we call "synthetic nearest neighbors" (SNN), to estimate these causal estimands. We prove finite-sample consistency and asymptotic normality of our estimator. Our analysis also leads to new theoretical results for the matrix completion literature. In particular, we establish entry-wise, i.e., max-norm, finite-sample consistency and asymptotic normality results for matrix completion with MNAR data. As a special case, this also provides entry-wise bounds for matrix completion with MCAR data. Across simulated and real data, we demonstrate the efficacy of our proposed estimator.


Real-Time Decoding of an Integrate and Fire Encoder

Neural Information Processing Systems

Neuronal encoding models range from the detailed biophysically-based Hodgkin Huxley model, to the statistical linear time invariant model specifying firing rates in terms of the extrinsic signal. Decoding the former becomes intractable, while the latter does not adequately capture the nonlinearities present in the neuronal encoding system. For use in practical applications, we wish to record the output of neurons, namely spikes, and decode this signal fast in order to drive a machine, for example a prosthetic device. Here, we introduce a causal, real-time decoder of the biophysically-based Integrate and Fire encoding neuron model. We show that the upper bound of the real-time reconstruction error decreases polynomially in time, and that the L2 norm of the error is bounded by a constant that depends on the density of the spikes, as well as the bandwidth and the decay of the input signal. We numerically validate the effect of these parameters on the reconstruction error.