Dabrowski, Joel Janek
PINN-Ray: A Physics-Informed Neural Network to Model Soft Robotic Fin Ray Fingers
Wang, Xing, Dabrowski, Joel Janek, Pinskier, Josh, Liow, Lois, Viswanathan, Vinoth, Scalzo, Richard, Howard, David
Modelling complex deformation for soft robotics provides a guideline to understand their behaviour, leading to safe interaction with the environment. However, building a surrogate model with high accuracy and fast inference speed can be challenging for soft robotics due to the nonlinearity from complex geometry, large deformation, material nonlinearity etc. The reality gap from surrogate models also prevents their further deployment in the soft robotics domain. In this study, we proposed a physics-informed Neural Networks (PINNs) named PINN-Ray to model complex deformation for a Fin Ray soft robotic gripper, which embeds the minimum potential energy principle from elastic mechanics and additional high-fidelity experimental data into the loss function of neural network for training. This method is significant in terms of its generalisation to complex geometry and robust to data scarcity as compared to other data-driven neural networks. Furthermore, it has been extensively evaluated to model the deformation of the Fin Ray finger under external actuation. PINN-Ray demonstrates improved accuracy as compared with Finite element modelling (FEM) after applying the data assimilation scheme to treat the sim-to-real gap. Additionally, we introduced our automated framework to design, fabricate soft robotic fingers, and characterise their deformation by visual tracking, which provides a guideline for the fast prototype of soft robotics.
A Neural Emulator for Uncertainty Estimation of Fire Propagation
Bolt, Andrew, Sanderson, Conrad, Dabrowski, Joel Janek, Huston, Carolyn, Kuhnert, Petra
Wildfire propagation is a highly stochastic process where small changes in environmental conditions (such as wind speed and direction) can lead to large changes in observed behaviour. A traditional approach to quantify uncertainty in fire-front progression is to generate probability maps via ensembles of simulations. However, use of ensembles is typically computationally expensive, which can limit the scope of uncertainty analysis. To address this, we explore the use of a spatio-temporal neural-based modelling approach to directly estimate the likelihood of fire propagation given uncertainty in input parameters. The uncertainty is represented by deliberately perturbing the input weather forecast during model training. The computational load is concentrated in the model training process, which allows larger probability spaces to be explored during deployment. Empirical evaluations indicate that the proposed model achieves comparable fire boundaries to those produced by the traditional SPARK simulation platform, with an overall Jaccard index (similarity score) of 67.4% on a set of 35 simulated fires. When compared to a related neural model (emulator) which was employed to generate probability maps via ensembles of emulated fires, the proposed approach produces competitive Jaccard similarity scores while being approximately an order of magnitude faster.
Bayesian Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires
Dabrowski, Joel Janek, Pagendam, Daniel Edward, Hilton, James, Sanderson, Conrad, MacKinlay, Daniel, Huston, Carolyn, Bolt, Andrew, Kuhnert, Petra
We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simulates a fire-front as it propagates through the spatio-temporal domain. We show that popular optimisation cost functions used in the literature can result in PINNs that fail to maintain temporal continuity in modelled fire-fronts when there are extreme changes in exogenous forcing variables such as wind direction. We thus propose novel additions to the optimisation cost function that improves temporal continuity under these extreme changes. Furthermore, we develop an approach to perform data assimilation within the PINN such that the PINN predictions are drawn towards observations of the fire-front. Finally, we incorporate our novel approaches into a Bayesian PINN (B-PINN) to provide uncertainty quantification in the fire-front predictions. This is significant as the standard solver, the level-set method, does not naturally offer the capability for data assimilation and uncertainty quantification. Our results show that, with our novel approaches, the B-PINN can produce accurate predictions with high quality uncertainty quantification on real-world data.
Fruit Picker Activity Recognition with Wearable Sensors and Machine Learning
Dabrowski, Joel Janek, Rahman, Ashfaqur
In this paper we present a novel application of detecting fruit picker activities based on time series data generated from wearable sensors. During harvesting, fruit pickers pick fruit into wearable bags and empty these bags into harvesting bins located in the orchard. Once full, these bins are quickly transported to a cooled pack house to improve the shelf life of picked fruits. For farmers and managers, the knowledge of when a picker bag is emptied is important for managing harvesting bins more effectively to minimise the time the picked fruit is left out in the heat (resulting in reduced shelf life). We propose a means to detect these bag-emptying events using human activity recognition with wearable sensors and machine learning methods. We develop a semi-supervised approach to labelling the data. A feature-based machine learning ensemble model and a deep recurrent convolutional neural network are developed and tested on a real-world dataset. When compared, the neural network achieves 86% detection accuracy.
An operational framework to automatically evaluate the quality of weather observations from third-party stations
Shao, Quanxi, Li, Ming, Dabrowski, Joel Janek, Bakar, Shuvo, Rahman, Ashfaqur, Powell, Andrea, Henderson, Brent
With increasing number of crowdsourced private automatic weather stations (called TPAWS) established to fill the gap of official network and obtain local weather information for various purposes, the data quality is a major concern in promoting their usage. Proper quality control and assessment are necessary to reach mutual agreement on the TPAWS observations. To derive near real-time assessment for operational system, we propose a simple, scalable and interpretable framework based on AI/Stats/ML models. The framework constructs separate models for individual data from official sources and then provides the final assessment by fusing the individual models. The performance of our proposed framework is evaluated by synthetic data and demonstrated by applying it to a re-al TPAWS network.
A Spatio-Temporal Neural Network Forecasting Approach for Emulation of Firefront Models
Bolt, Andrew, Huston, Carolyn, Kuhnert, Petra, Dabrowski, Joel Janek, Hilton, James, Sanderson, Conrad
Computational simulations of wildfire spread typically employ empirical rate-of-spread calculations under various conditions (such as terrain, fuel type, weather). Small perturbations in conditions can often lead to significant changes in fire spread (such as speed and direction), necessitating a computationally expensive large set of simulations to quantify uncertainty. Model emulation seeks alternative representations of physical models using machine learning, aiming to provide more efficient and/or simplified surrogate models. We propose a dedicated spatio-temporal neural network based framework for model emulation, able to capture the complex behaviour of fire spread models. The proposed approach can approximate forecasts at fine spatial and temporal resolutions that are often challenging for neural network based approaches. Furthermore, the proposed approach is robust even with small training sets, due to novel data augmentation methods. Empirical experiments show good agreement between simulated and emulated firefronts, with an average Jaccard score of 0.76.