Cross, Elizabeth J
A spectrum of physics-informed Gaussian processes for regression in engineering
Cross, Elizabeth J, Rogers, Timothy J, Pitchforth, Daniel J, Gibson, Samuel J, Jones, Matthew R
Despite the growing availability of sensing and data in general, we remain unable to fully characterise many in-service engineering systems and structures from a purely data-driven approach. The vast data and resources available to capture human activity are unmatched in our engineered world, and, even in cases where data could be referred to as ``big,'' they will rarely hold information across operational windows or life spans. This paper pursues the combination of machine learning technology and physics-based reasoning to enhance our ability to make predictive models with limited data. By explicitly linking the physics-based view of stochastic processes with a data-based regression approach, a spectrum of possible Gaussian process models are introduced that enable the incorporation of different levels of expert knowledge of a system. Examples illustrate how these approaches can significantly reduce reliance on data collection whilst also increasing the interpretability of the model, another important consideration in this context.
Constraining Gaussian processes for physics-informed acoustic emission mapping
Jones, Matthew R, Rogers, Timothy J, Cross, Elizabeth J
The automated localisation of damage in structures is a challenging but critical ingredient in the path towards predictive or condition-based maintenance of high value structures. The use of acoustic emission time of arrival mapping is a promising approach to this challenge, but is severely hindered by the need to collect a dense set of artificial acoustic emission measurements across the structure, resulting in a lengthy and often impractical data acquisition process. In this paper, we consider the use of physics-informed Gaussian processes for learning these maps to alleviate this problem. In the approach, the Gaussian process is constrained to the physical domain such that information relating to the geometry and boundary conditions of the structure are embedded directly into the learning process, returning a model that guarantees that any predictions made satisfy physically-consistent behaviour at the boundary. A number of scenarios that arise when training measurement acquisition is limited, including where training data are sparse, and also of limited coverage over the structure of interest. Using a complex plate-like structure as an experimental case study, we show that our approach significantly reduces the burden of data collection, where it is seen that incorporation of boundary condition knowledge significantly improves predictive accuracy as training observations are reduced, particularly when training measurements are not available across all parts of the structure.