Crestani, Fabio
Zero-Shot and Efficient Clarification Need Prediction in Conversational Search
Lu, Lili, Meng, Chuan, Ravenda, Federico, Aliannejadi, Mohammad, Crestani, Fabio
Clarification need prediction (CNP) is a key task in conversational search, aiming to predict whether to ask a clarifying question or give an answer to the current user query. However, current research on CNP suffers from the issues of limited CNP training data and low efficiency. In this paper, we propose a zero-shot and efficient CNP framework (Zef-CNP), in which we first prompt large language models (LLMs) in a zero-shot manner to generate two sets of synthetic queries: ambiguous and specific (unambiguous) queries. We then use the generated queries to train efficient CNP models. Zef-CNP eliminates the need for human-annotated clarification-need labels during training and avoids the use of LLMs with high query latency at query time. To further improve the generation quality of synthetic queries, we devise a topic-, information-need-, and query-aware chain-of-thought (CoT) prompting strategy (TIQ-CoT). Moreover, we enhance TIQ-CoT with counterfactual query generation (CoQu), which guides LLMs first to generate a specific/ambiguous query and then sequentially generate its corresponding ambiguous/specific query. Experimental results show that Zef-CNP achieves superior CNP effectiveness and efficiency compared with zero- and few-shot LLM-based CNP predictors.
The Emotional Spectrum of LLMs: Leveraging Empathy and Emotion-Based Markers for Mental Health Support
De Grandi, Alessandro, Ravenda, Federico, Raballo, Andrea, Crestani, Fabio
The increasing demand for mental health services has highlighted the need for innovative solutions, particularly in the realm of psychological conversational AI, where the availability of sensitive data is scarce. In this work, we explored the development of a system tailored for mental health support with a novel approach to psychological assessment based on explainable emotional profiles in combination with empathetic conversational models, offering a promising tool for augmenting traditional care, particularly where immediate expertise is unavailable. Our work can be divided into two main parts, intrinsecaly connected to each other. First, we present RACLETTE, a conversational system that demonstrates superior emotional accuracy compared to state-of-the-art benchmarks in both understanding users' emotional states and generating empathetic responses during conversations, while progressively building an emotional profile of the user through their interactions. Second, we show how the emotional profiles of a user can be used as interpretable markers for mental health assessment. These profiles can be compared with characteristic emotional patterns associated with different mental disorders, providing a novel approach to preliminary screening and support.
Towards Self-Contained Answers: Entity-Based Answer Rewriting in Conversational Search
Sekuliฤ, Ivan, Balog, Krisztian, Crestani, Fabio
Conversational information-seeking (CIS) is an emerging paradigm for knowledge acquisition and exploratory search. Traditional web search interfaces enable easy exploration of entities, but this is limited in conversational settings due to the limited-bandwidth interface. This paper explore ways to rewrite answers in CIS, so that users can understand them without having to resort to external services or sources. Specifically, we focus on salient entities -- entities that are central to understanding the answer. As our first contribution, we create a dataset of conversations annotated with entities for saliency. Our analysis of the collected data reveals that the majority of answers contain salient entities. As our second contribution, we propose two answer rewriting strategies aimed at improving the overall user experience in CIS. One approach expands answers with inline definitions of salient entities, making the answer self-contained. The other approach complements answers with follow-up questions, offering users the possibility to learn more about specific entities. Results of a crowdsourcing-based study indicate that rewritten answers are clearly preferred over the original ones. We also find that inline definitions tend to be favored over follow-up questions, but this choice is highly subjective, thereby providing a promising future direction for personalization.
Estimating the Usefulness of Clarifying Questions and Answers for Conversational Search
Sekuliฤ, Ivan, ลajewska, Weronika, Balog, Krisztian, Crestani, Fabio
While the body of research directed towards constructing and generating clarifying questions in mixed-initiative conversational search systems is vast, research aimed at processing and comprehending users' answers to such questions is scarce. To this end, we present a simple yet effective method for processing answers to clarifying questions, moving away from previous work that simply appends answers to the original query and thus potentially degrades retrieval performance. Specifically, we propose a classifier for assessing usefulness of the prompted clarifying question and an answer given by the user. Useful questions or answers are further appended to the conversation history and passed to a transformer-based query rewriting module. Results demonstrate significant improvements over strong non-mixed-initiative baselines. Furthermore, the proposed approach mitigates the performance drops when non useful questions and answers are utilized.
Mental Disorders on Online Social Media Through the Lens of Language and Behaviour: Analysis and Visualisation
Rรญssola, Esteban A., Aliannejadi, Mohammad, Crestani, Fabio
Due to the worldwide accessibility to the Internet along with the continuous advances in mobile technologies, physical and digital worlds have become completely blended, and the proliferation of social media platforms has taken a leading role over this evolution. In this paper, we undertake a thorough analysis towards better visualising and understanding the factors that characterise and differentiate social media users affected by mental disorders. We perform different experiments studying multiple dimensions of language, including vocabulary uniqueness, word usage, linguistic style, psychometric attributes, emotions' co-occurrence patterns, and online behavioural traits, including social engagement and posting trends. Our findings reveal significant differences on the use of function words, such as adverbs and verb tense, and topic-specific vocabulary, such as biological processes. As for emotional expression, we observe that affected users tend to share emotions more regularly than control individuals on average. Overall, the monthly posting variance of the affected groups is higher than the control groups. Moreover, we found evidence suggesting that language use on micro-blogging platforms is less distinguishable for users who have a mental disorder than other less restrictive platforms. In particular, we observe on Twitter less quantifiable differences between affected and control groups compared to Reddit.
A Systematic Analysis on the Impact of Contextual Information on Point-of-Interest Recommendation
Rahmani, Hossein A., Aliannejadi, Mohammad, Baratchi, Mitra, Crestani, Fabio
As the popularity of Location-based Social Networks (LBSNs) increases, designing accurate models for Point-of-Interest (POI) recommendation receives more attention. POI recommendation is often performed by incorporating contextual information into previously designed recommendation algorithms. Some of the major contextual information that has been considered in POI recommendation are the location attributes (i.e., exact coordinates of a location, category, and check-in time), the user attributes (i.e., comments, reviews, tips, and check-in made to the locations), and other information, such as the distance of the POI from user's main activity location, and the social tie between users. The right selection of such factors can significantly impact the performance of the POI recommendation. However, previous research does not consider the impact of the combination of these different factors. In this paper, we propose different contextual models and analyze the fusion of different major contextual information in POI recommendation. The major contributions of this paper are: (i) providing an extensive survey of context-aware location recommendation (ii) quantifying and analyzing the impact of different contextual information (e.g., social, temporal, spatial, and categorical) in the POI recommendation on available baselines and two new linear and non-linear models, that can incorporate all the major contextual information into a single recommendation model, and (iii) evaluating the considered models using two well-known real-world datasets. Our results indicate that while modeling geographical and temporal influences can improve recommendation quality, fusing all other contextual information into a recommendation model is not always the best strategy.
Context-Aware Target Apps Selection and Recommendation for Enhancing Personal Mobile Assistants
Aliannejadi, Mohammad, Zamani, Hamed, Crestani, Fabio, Croft, W. Bruce
Users install many apps on their smartphones, raising issues related to information overload for users and resource management for devices. Moreover, the recent increase in the use of personal assistants has made mobile devices even more pervasive in users' lives. This paper addresses two research problems that are vital for developing effective personal mobile assistants: target apps selection and recommendation. The former is the key component of a unified mobile search system: a system that addresses the users' information needs for all the apps installed on their devices with a unified mode of access. The latter, instead, predicts the next apps that the users would want to launch. Here we focus on context-aware models to leverage the rich contextual information available to mobile devices. We design an in situ study to collect thousands of mobile queries enriched with mobile sensor data (now publicly available for research purposes). With the aid of this dataset, we study the user behavior in the context of these tasks and propose a family of context-aware neural models that take into account the sequential, temporal, and personal behavior of users. We study several state-of-the-art models and show that the proposed models significantly outperform the baselines.
Asking Clarifying Questions in Open-Domain Information-Seeking Conversations
Aliannejadi, Mohammad, Zamani, Hamed, Crestani, Fabio, Croft, W. Bruce
Users often fail to formulate their complex information needs in a single query. As a consequence, they may need to scan multiple result pages or reformulate their queries, which may be a frustrating experience. Alternatively, systems can improve user satisfaction by proactively asking questions of the users to clarify their information needs. Asking clarifying questions is especially important in conversational systems since they can only return a limited number of (often only one) result(s). In this paper, we formulate the task of asking clarifying questions in open-domain information-seeking conversational systems. To this end, we propose an offline evaluation methodology for the task and collect a dataset, called Qulac, through crowdsourcing. Our dataset is built on top of the TREC Web Track 2009-2012 data and consists of over 10K question-answer pairs for 198 TREC topics with 762 facets. Our experiments on an oracle model demonstrate that asking only one good question leads to over 170% retrieval performance improvement in terms of P@1, which clearly demonstrates the potential impact of the task. We further propose a retrieval framework consisting of three components: question retrieval, question selection, and document retrieval. In particular, our question selection model takes into account the original query and previous question-answer interactions while selecting the next question. Our model significantly outperforms competitive baselines. To foster research in this area, we have made Qulac publicly available.