Plotting

 Cotterell, Ryan


Naturalistic Causal Probing for Morpho-Syntax

arXiv.org Artificial Intelligence

Probing has become a go-to methodology for interpreting and analyzing deep neural models in natural language processing. However, there is still a lack of understanding of the limitations and weaknesses of various types of probes. In this work, we suggest a strategy for input-level intervention on naturalistic sentences. Using our approach, we intervene on the morpho-syntactic features of a sentence, while keeping the rest of the sentence unchanged. Such an intervention allows us to causally probe pre-trained models. We apply our naturalistic causal probing framework to analyze the effects of grammatical gender and number on contextualized representations extracted from three pre-trained models in Spanish: the multilingual versions of BERT, RoBERTa, and GPT-2. Our experiments suggest that naturalistic interventions lead to stable estimates of the causal effects of various linguistic properties. Moreover, our experiments demonstrate the importance of naturalistic causal probing when analyzing pre-trained models.


Investigating the Role of Centering Theory in the Context of Neural Coreference Resolution Systems

arXiv.org Artificial Intelligence

Centering theory (CT; Grosz et al., 1995) provides a linguistic analysis of the structure of discourse. According to the theory, local coherence of discourse arises from the manner and extent to which successive utterances make reference to the same entities. In this paper, we investigate the connection between centering theory and modern coreference resolution systems. We provide an operationalization of centering and systematically investigate if neural coreference resolvers adhere to the rules of centering theory by defining various discourse metrics and developing a search-based methodology. Our information-theoretic analysis reveals a positive dependence between coreference and centering; but also shows that high-quality neural coreference resolvers may not benefit much from explicitly modeling centering ideas. Our analysis further shows that contextualized embeddings contain much of the coherence information, which helps explain why CT can only provide little gains to modern neural coreference resolvers which make use of pretrained representations. Finally, we discuss factors that contribute to coreference which are not modeled by CT such as world knowledge and recency bias. We formulate a version of CT that also models recency and show that it captures coreference information better compared to vanilla CT.


Typical Decoding for Natural Language Generation

arXiv.org Artificial Intelligence

Despite achieving incredibly low perplexities on myriad natural language corpora, today's language models still often underperform when used to generate text. This dichotomy has puzzled the language generation community for the last few years. In this work, we posit that the abstraction of natural language as a communication channel (\`a la Shannon, 1948) can provide new insights into the behaviors of probabilistic language generators, e.g., why high-probability texts can be dull or repetitive. Humans use language as a means of communicating information, and do so in an efficient yet error-minimizing manner, choosing each word in a string with this (perhaps subconscious) goal in mind. We propose that generation from probabilistic models should mimic this behavior. Rather than always choosing words from the high-probability region of the distribution--which have a low Shannon information content--we sample from the set of words with an information content close to its expected value, i.e., close to the conditional entropy of our model. This decision criterion can be realized through a simple and efficient implementation, which we call typical sampling. Automatic and human evaluations show that, in comparison to nucleus and top-k sampling, typical sampling offers competitive performance in terms of quality while consistently reducing the number of degenerate repetitions.


A Word on Machine Ethics: A Response to Jiang et al. (2021)

arXiv.org Artificial Intelligence

Ethics is one of the longest standing intellectual endeavors of humanity. In recent years, the fields of AI and NLP have attempted to wrangle with how learning systems that interact with humans should be constrained to behave ethically. One proposal in this vein is the construction of morality models that can take in arbitrary text and output a moral judgment about the situation described. In this work, we focus on a single case study of the recently proposed Delphi model and offer a critique of the project's proposed method of automating morality judgments. Through an audit of Delphi, we examine broader issues that would be applicable to any similar attempt. We conclude with a discussion of how machine ethics could usefully proceed, by focusing on current and near-future uses of technology, in a way that centers around transparency, democratic values, and allows for straightforward accountability.


A Plug-and-Play Method for Controlled Text Generation

arXiv.org Artificial Intelligence

Large pre-trained language models have repeatedly shown their ability to produce fluent text. Yet even when starting from a prompt, generation can continue in many plausible directions. Current decoding methods with the goal of controlling generation, e.g., to ensure specific words are included, either require additional models or fine-tuning, or work poorly when the task at hand is semantically unconstrained, e.g., story generation. In this work, we present a plug-and-play decoding method for controlled language generation that is so simple and intuitive, it can be described in a single sentence: given a topic or keyword, we add a shift to the probability distribution over our vocabulary towards semantically similar words. We show how annealing this distribution can be used to impose hard constraints on language generation, something no other plug-and-play method is currently able to do with SOTA language generators. Despite the simplicity of this approach, we see it works incredibly well in practice: decoding from GPT-2 leads to diverse and fluent sentences while guaranteeing the appearance of given guide words. We perform two user studies, revealing that (1) our method outperforms competing methods in human evaluations; and (2) forcing the guide words to appear in the generated text has no impact on the fluency of the generated text.


Quantifying Gender Bias Towards Politicians in Cross-Lingual Language Models

arXiv.org Machine Learning

While the prevalence of large pre-trained language models has led to significant improvements in the performance of NLP systems, recent research has demonstrated that these models inherit societal biases extant in natural language. In this paper, we explore a simple method to probe pre-trained language models for gender bias, which we use to effect a multi-lingual study of gender bias towards politicians. We construct a dataset of 250k politicians from most countries in the world and quantify adjective and verb usage around those politicians' names as a function of their gender. We conduct our study in 7 languages across 6 different language modeling architectures. Our results demonstrate that stance towards politicians in pre-trained language models is highly dependent on the language used. Finally, contrary to previous findings, our study suggests that larger language models do not tend to be significantly more gender-biased than smaller ones.


Uncovering Probabilistic Implications in Typological Knowledge Bases

arXiv.org Artificial Intelligence

The study of linguistic typology is rooted in the implications we find between linguistic features, such as the fact that languages with object-verb word ordering tend to have post-positions. Uncovering such implications typically amounts to time-consuming manual processing by trained and experienced linguists, which potentially leaves key linguistic universals unexplored. In this paper, we present a computational model which successfully identifies known universals, including Greenberg universals, but also uncovers new ones, worthy of further linguistic investigation. Our approach outperforms baselines previously used for this problem, as well as a strong baseline from knowledge base population.


A Discriminative Latent-Variable Model for Bilingual Lexicon Induction

arXiv.org Machine Learning

We introduce a novel discriminative latent-variable model for the task of bilingual lexicon induction. Our model combines the bipartite matching dictionary prior of Haghighi et al. (2008) with a state-of-the-art embedding-based approach. To train the model, we derive an efficient Viterbi EM algorithm. We provide empirical improvements on six language pairs under two metrics and show that the prior theoretically and empirically helps to mitigate the hubness problem. We also demonstrate how previous work may be viewed as a similarly fashioned latent-variable model, albeit with a different prior.