Cotogni, Marco
DUCK: Distance-based Unlearning via Centroid Kinematics
Cotogni, Marco, Bonato, Jacopo, Sabetta, Luigi, Pelosin, Francesco, Nicolosi, Alessandro
Machine Unlearning is rising as a new field, driven by the pressing necessity of ensuring privacy in modern artificial intelligence models. This technique primarily aims to eradicate any residual influence of a specific subset of data from the knowledge acquired by a neural model during its training. This work introduces a novel unlearning algorithm, denoted as Distance-based Unlearning via Centroid Kinematics (DUCK), which employs metric learning to guide the removal of samples matching the nearest incorrect centroid in the embedding space. Evaluation of the algorithm's performance is conducted across various benchmark datasets in two distinct scenarios, class removal, and homogeneous sampling removal, obtaining state-of-the-art performance. We introduce a novel metric, called Adaptive Unlearning Score (AUS), encompassing not only the efficacy of the unlearning process in forgetting target data but also quantifying the performance loss relative to the original model. Moreover, we propose a novel membership inference attack to assess the algorithm's capacity to erase previously acquired knowledge, designed to be adaptable to future methodologies.
Predicting Tweet Engagement with Graph Neural Networks
Arazzi, Marco, Cotogni, Marco, Nocera, Antonino, Virgili, Luca
Social Networks represent one of the most important online sources to share content across a world-scale audience. In this context, predicting whether a post will have any impact in terms of engagement is of crucial importance to drive the profitable exploitation of these media. In the literature, several studies address this issue by leveraging direct features of the posts, typically related to the textual content and the user publishing it. In this paper, we argue that the rise of engagement is also related to another key component, which is the semantic connection among posts published by users in social media. Hence, we propose TweetGage, a Graph Neural Network solution to predict the user engagement based on a novel graph-based model that represents the relationships among posts. To validate our proposal, we focus on the Twitter platform and perform a thorough experimental campaign providing evidence of its quality.