Goto

Collaborating Authors

 Costa, Rui Ponte


Dynamical similarity analysis can identify compositional dynamics developing in RNNs

arXiv.org Artificial Intelligence

Methods for analyzing representations in neural systems have become a popular tool in both neuroscience and mechanistic interpretability. Having measures to compare how similar activations of neurons are across conditions, architectures, and species, gives us a scalable way of learning how information is transformed within different neural networks. In contrast to this trend, recent investigations have revealed how some metrics can respond to spurious signals and hence give misleading results. To identify the most reliable metric and understand how measures could be improved, it is going to be important to identify specific test cases which can serve as benchmarks. Here we propose that the phenomena of compositional learning in recurrent neural networks (RNNs) allows us to build a test case for dynamical representation alignment metrics. By implementing this case, we show it enables us to test whether metrics can identify representations which gradually develop throughout learning and probe whether representations identified by metrics are relevant to computations executed by networks. By building both an attractor- and RNN-based test case, we show that the new Dynamical Similarity Analysis (DSA) is more noise robust and identifies behaviorally relevant representations more reliably than prior metrics (Procrustes, CKA). We also show how test cases can be used beyond evaluating metrics to study new architectures. Specifically, results from applying DSA to modern (Mamba) state space models, suggest that, in contrast to RNNs, these models may not exhibit changes to their recurrent dynamics due to their expressiveness. Overall, by developing test cases, we show DSA's exceptional ability to detect compositional dynamical motifs, thereby enhancing our understanding of how computations unfold in RNNs.


BP(\lambda): Online Learning via Synthetic Gradients

arXiv.org Artificial Intelligence

Training recurrent neural networks typically relies on backpropagation through time (BPTT). BPTT depends on forward and backward passes to be completed, rendering the network locked to these computations before loss gradients are available. Recently, Jaderberg et al. proposed synthetic gradients to alleviate the need for full BPTT. In their implementation synthetic gradients are learned through a mixture of backpropagated gradients and bootstrapped synthetic gradients, analogous to the temporal difference (TD) algorithm in Reinforcement Learning (RL). However, as in TD learning, heavy use of bootstrapping can result in bias which leads to poor synthetic gradient estimates. Inspired by the accumulate $\mathrm{TD}(\lambda)$ in RL, we propose a fully online method for learning synthetic gradients which avoids the use of BPTT altogether: accumulate $BP(\lambda)$. As in accumulate $\mathrm{TD}(\lambda)$, we show analytically that accumulate $\mathrm{BP}(\lambda)$ can control the level of bias by using a mixture of temporal difference errors and recursively defined eligibility traces. We next demonstrate empirically that our model outperforms the original implementation for learning synthetic gradients in a variety of tasks, and is particularly suited for capturing longer timescales. Finally, building on recent work we reflect on accumulate $\mathrm{BP}(\lambda)$ as a principle for learning in biological circuits. In summary, inspired by RL principles we introduce an algorithm capable of bias-free online learning via synthetic gradients.


Learning offline: memory replay in biological and artificial reinforcement learning

arXiv.org Artificial Intelligence

Learning to act in an environment to maximise rewards is among the brain's key functions. This process has often been conceptualised within the framework of reinforcement learning, which has also gained prominence in machine learning and artificial intelligence (AI) as a way to optimise decision-making. A common aspect of both biological and machine reinforcement learning is the reactivation of previously experienced episodes, referred to as replay. Replay is important for memory consolidation in biological neural networks, and is key to stabilising learning in deep neural networks. Here, we review recent developments concerning the functional roles of replay in the fields of neuroscience and AI. Complementary progress suggests how replay might support learning processes, including generalisation and continual learning, affording opportunities to transfer knowledge across the two fields to advance the understanding of biological and artificial learning and memory.


CCN GAC Workshop: Issues with learning in biological recurrent neural networks

arXiv.org Artificial Intelligence

This perspective piece came about through the Generative Adversarial Collaboration (GAC) series of workshops organized by the Computational Cognitive Neuroscience (CCN) conference in 2020. We brought together a number of experts from the field of theoretical neuroscience to debate emerging issues in our understanding of how learning is implemented in biological recurrent neural networks. Here, we will give a brief review of the common assumptions about biological learning and the corresponding findings from experimental neuroscience and contrast them with the efficiency of gradient-based learning in recurrent neural networks commonly used in artificial intelligence. We will then outline the key issues discussed in the workshop: synaptic plasticity, neural circuits, theory-experiment divide, and objective functions. Finally, we conclude with recommendations for both theoretical and experimental neuroscientists when designing new studies that could help to bring clarity to these issues.


Dendritic cortical microcircuits approximate the backpropagation algorithm

Neural Information Processing Systems

Deep learning has seen remarkable developments over the last years, many of them inspired by neuroscience. However, the main learning mechanism behind these advances – error backpropagation – appears to be at odds with neurobiology. Here, we introduce a multilayer neuronal network model with simplified dendritic compartments in which error-driven synaptic plasticity adapts the network towards a global desired output. In contrast to previous work our model does not require separate phases and synaptic learning is driven by local dendritic prediction errors continuously in time. Such errors originate at apical dendrites and occur due to a mismatch between predictive input from lateral interneurons and activity from actual top-down feedback. Through the use of simple dendritic compartments and different cell-types our model can represent both error and normal activity within a pyramidal neuron. We demonstrate the learning capabilities of the model in regression and classification tasks, and show analytically that it approximates the error backpropagation algorithm. Moreover, our framework is consistent with recent observations of learning between brain areas and the architecture of cortical microcircuits. Overall, we introduce a novel view of learning on dendritic cortical circuits and on how the brain may solve the long-standing synaptic credit assignment problem.


Dendritic cortical microcircuits approximate the backpropagation algorithm

Neural Information Processing Systems

Deep learning has seen remarkable developments over the last years, many of them inspired by neuroscience. However, the main learning mechanism behind these advances – error backpropagation – appears to be at odds with neurobiology. Here, we introduce a multilayer neuronal network model with simplified dendritic compartments in which error-driven synaptic plasticity adapts the network towards a global desired output. In contrast to previous work our model does not require separate phases and synaptic learning is driven by local dendritic prediction errors continuously in time. Such errors originate at apical dendrites and occur due to a mismatch between predictive input from lateral interneurons and activity from actual top-down feedback. Through the use of simple dendritic compartments and different cell-types our model can represent both error and normal activity within a pyramidal neuron. We demonstrate the learning capabilities of the model in regression and classification tasks, and show analytically that it approximates the error backpropagation algorithm. Moreover, our framework is consistent with recent observations of learning between brain areas and the architecture of cortical microcircuits. Overall, we introduce a novel view of learning on dendritic cortical circuits and on how the brain may solve the long-standing synaptic credit assignment problem.


Cortical microcircuits as gated-recurrent neural networks

arXiv.org Machine Learning

Cortical circuits exhibit intricate recurrent architectures that are remarkably similar across different brain areas. Such stereotyped structure suggests the existence of common computational principles. However, such principles have remained largely elusive. Inspired by gated-memory networks, namely long short-term memory networks (LSTMs), we introduce a recurrent neural network in which information is gated through inhibitory cells that are subtractive (subLSTM). We propose a natural mapping of subLSTMs onto known canonical excitatory-inhibitory cortical microcircuits. Our empirical evaluation across sequential image classification and language modelling tasks shows that subLSTM units can achieve similar performance to LSTM units. These results suggest that cortical circuits can be optimised to solve complex contextual problems and proposes a novel view on their computational function. Overall our work provides a step towards unifying recurrent networks as used in machine learning with their biological counterparts.