Cossettini, Andrea
CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention
Dimofte, Alexandru, Bucagu, Glenn Anta, Ingolfsson, Thorir Mar, Wang, Xiaying, Cossettini, Andrea, Benini, Luca, Li, Yawei
Electroencephalograph (EEG) is a crucial tool for studying brain activity. Recently, self-supervised learning methods leveraging large unlabeled datasets have emerged as a potential solution to the scarcity of widely available annotated EEG data. However, current methods suffer from at least one of the following limitations: i) sub-optimal EEG signal modeling, ii) model sizes in the hundreds of millions of trainable parameters, and iii) reliance on private datasets and/or inconsistent public benchmarks, hindering reproducibility. To address these challenges, we introduce a Compact Encoder for Representations of Brain Oscillations using alternating attention (CEReBrO), a new small EEG foundation model. Our tokenization scheme represents EEG signals at a per-channel patch granularity. We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention. We present several model sizes ranging from 3.6 million to 85 million parameters. Pre-trained on over 20,000 hours of publicly available scalp EEG recordings with diverse channel configurations, our models set new benchmarks in emotion detection and seizure detection tasks, with competitive performance in anomaly classification and gait prediction. This validates our models' effectiveness and efficiency.
BISeizuRe: BERT-Inspired Seizure Data Representation to Improve Epilepsy Monitoring
Benfenati, Luca, Ingolfsson, Thorir Mar, Cossettini, Andrea, Pagliari, Daniele Jahier, Burrello, Alessio, Benini, Luca
This study presents a novel approach for EEG-based seizure detection leveraging a BERT-based model. The model, BENDR, undergoes a two-phase training process. Initially, it is pre-trained on the extensive Temple University Hospital EEG Corpus (TUEG), a 1.5 TB dataset comprising over 10,000 subjects, to extract common EEG data patterns. Subsequently, the model is fine-tuned on the CHB-MIT Scalp EEG Database, consisting of 664 EEG recordings from 24 pediatric patients, of which 198 contain seizure events. Key contributions include optimizing fine-tuning on the CHB-MIT dataset, where the impact of model architecture, pre-processing, and post-processing techniques are thoroughly examined to enhance sensitivity and reduce false positives per hour (FP/h). We also explored custom training strategies to ascertain the most effective setup. The model undergoes a novel second pre-training phase before subject-specific fine-tuning, enhancing its generalization capabilities. The optimized model demonstrates substantial performance enhancements, achieving as low as 0.23 FP/h, 2.5$\times$ lower than the baseline model, with a lower but still acceptable sensitivity rate, showcasing the effectiveness of applying a BERT-based approach on EEG-based seizure detection.
SzCORE: A Seizure Community Open-source Research Evaluation framework for the validation of EEG-based automated seizure detection algorithms
Dan, Jonathan, Pale, Una, Amirshahi, Alireza, Cappelletti, William, Ingolfsson, Thorir Mar, Wang, Xiaying, Cossettini, Andrea, Bernini, Adriano, Benini, Luca, Beniczky, Sándor, Atienza, David, Ryvlin, Philippe
The need for high-quality automated seizure detection algorithms based on electroencephalography (EEG) becomes ever more pressing with the increasing use of ambulatory and long-term EEG monitoring. Heterogeneity in validation methods of these algorithms influences the reported results and makes comprehensive evaluation and comparison challenging. This heterogeneity concerns in particular the choice of datasets, evaluation methodologies, and performance metrics. In this paper, we propose a unified framework designed to establish standardization in the validation of EEG-based seizure detection algorithms. Based on existing guidelines and recommendations, the framework introduces a set of recommendations and standards related to datasets, file formats, EEG data input content, seizure annotation input and output, cross-validation strategies, and performance metrics. We also propose the 10-20 seizure detection benchmark, a machine-learning benchmark based on public datasets converted to a standardized format. This benchmark defines the machine-learning task as well as reporting metrics. We illustrate the use of the benchmark by evaluating a set of existing seizure detection algorithms. The SzCORE (Seizure Community Open-source Research Evaluation) framework and benchmark are made publicly available along with an open-source software library to facilitate research use, while enabling rigorous evaluation of the clinical significance of the algorithms, fostering a collective effort to more optimally detect seizures to improve the lives of people with epilepsy.
EpiDeNet: An Energy-Efficient Approach to Seizure Detection for Embedded Systems
Ingolfsson, Thorir Mar, Chakraborty, Upasana, Wang, Xiaying, Beniczky, Sandor, Ducouret, Pauline, Benatti, Simone, Ryvlin, Philippe, Cossettini, Andrea, Benini, Luca
Epilepsy is a prevalent neurological disorder that affects millions of individuals globally, and continuous monitoring coupled with automated seizure detection appears as a necessity for effective patient treatment. To enable long-term care in daily-life conditions, comfortable and smart wearable devices with long battery life are required, which in turn set the demand for resource-constrained and energy-efficient computing solutions. In this context, the development of machine learning algorithms for seizure detection faces the challenge of heavily imbalanced datasets. This paper introduces EpiDeNet, a new lightweight seizure detection network, and Sensitivity-Specificity Weighted Cross-Entropy (SSWCE), a new loss function that incorporates sensitivity and specificity, to address the challenge of heavily unbalanced datasets. The proposed EpiDeNet-SSWCE approach demonstrates the successful detection of 91.16% and 92.00% seizure events on two different datasets (CHB-MIT and PEDESITE, respectively), with only four EEG channels. A three-window majority voting-based smoothing scheme combined with the SSWCE loss achieves 3x reduction of false positives to 1.18 FP/h. EpiDeNet is well suited for implementation on low-power embedded platforms, and we evaluate its performance on two ARM Cortex-based platforms (M4F/M7) and two parallel ultra-low power (PULP) systems (GAP8, GAP9). The most efficient implementation (GAP9) achieves an energy efficiency of 40 GMAC/s/W, with an energy consumption per inference of only 0.051 mJ at high performance (726.46 MMAC/s), outperforming the best ARM Cortex-based solutions by approximately 160x in energy efficiency. The EpiDeNet-SSWCE method demonstrates effective and accurate seizure detection performance on heavily imbalanced datasets, while being suited for implementation on energy-constrained platforms.