Goto

Collaborating Authors

 Cornell, Samuele


ESPnet-SpeechLM: An Open Speech Language Model Toolkit

arXiv.org Artificial Intelligence

We present ESPnet-SpeechLM, an open toolkit designed to democratize the development of speech language models (SpeechLMs) and voice-driven agentic applications. The toolkit standardizes speech processing tasks by framing them as universal sequential modeling problems, encompassing a cohesive workflow of data preprocessing, pre-training, inference, and task evaluation. With ESPnet-SpeechLM, users can easily define task templates and configure key settings, enabling seamless and streamlined SpeechLM development. The toolkit ensures flexibility, efficiency, and scalability by offering highly configurable modules for every stage of the workflow. To illustrate its capabilities, we provide multiple use cases demonstrating how competitive SpeechLMs can be constructed with ESPnet-SpeechLM, including a 1.7B-parameter model pre-trained on both text and speech tasks, across diverse benchmarks. The toolkit and its recipes are fully transparent and reproducible at: https://github.com/espnet/espnet/tree/speechlm.


Resource-Efficient Separation Transformer

arXiv.org Artificial Intelligence

Transformers have recently achieved state-of-the-art performance in speech separation. These models, however, are computationally demanding and require a lot of learnable parameters. This paper explores Transformer-based speech separation with a reduced computational cost. Our main contribution is the development of the Resource-Efficient Separation Transformer (RE-SepFormer), a self-attention-based architecture that reduces the computational burden in two ways. First, it uses non-overlapping blocks in the latent space. Second, it operates on compact latent summaries calculated from each chunk. The RE-SepFormer reaches a competitive performance on the popular WSJ0-2Mix and WHAM! datasets in both causal and non-causal settings. Remarkably, it scales significantly better than the previous Transformer-based architectures in terms of memory and inference time, making it more suitable for processing long mixtures.


One model to rule them all ? Towards End-to-End Joint Speaker Diarization and Speech Recognition

arXiv.org Artificial Intelligence

This paper presents a novel framework for joint speaker diarization (SD) and automatic speech recognition (ASR), named SLIDAR (sliding-window diarization-augmented recognition). SLIDAR can process arbitrary length inputs and can handle any number of speakers, effectively solving ``who spoke what, when'' concurrently. SLIDAR leverages a sliding window approach and consists of an end-to-end diarization-augmented speech transcription (E2E DAST) model which provides, locally, for each window: transcripts, diarization and speaker embeddings. The E2E DAST model is based on an encoder-decoder architecture and leverages recent techniques such as serialized output training and ``Whisper-style" prompting. The local outputs are then combined to get the final SD+ASR result by clustering the speaker embeddings to get global speaker identities. Experiments performed on monaural recordings from the AMI corpus confirm the effectiveness of the method in both close-talk and far-field speech scenarios.


Exploring the Integration of Speech Separation and Recognition with Self-Supervised Learning Representation

arXiv.org Artificial Intelligence

Neural speech separation has made remarkable progress and its integration with automatic speech recognition (ASR) is an important direction towards realizing multi-speaker ASR. This work provides an insightful investigation of speech separation in reverberant and noisy-reverberant scenarios as an ASR front-end. In detail, we explore multi-channel separation methods, mask-based beamforming and complex spectral mapping, as well as the best features to use in the ASR back-end model. We employ the recent self-supervised learning representation (SSLR) as a feature and improve the recognition performance from the case with filterbank features. To further improve multi-speaker recognition performance, we present a carefully designed training strategy for integrating speech separation and recognition with SSLR. The proposed integration using TF-GridNet-based complex spectral mapping and WavLM-based SSLR achieves a 2.5% word error rate in reverberant WHAMR! test set, significantly outperforming an existing mask-based MVDR beamforming and filterbank integration (28.9%).


The CHiME-7 DASR Challenge: Distant Meeting Transcription with Multiple Devices in Diverse Scenarios

arXiv.org Artificial Intelligence

The CHiME challenges have played a significant role in the development and evaluation of robust automatic speech recognition (ASR) systems. We introduce the CHiME-7 distant ASR (DASR) task, within the 7th CHiME challenge. This task comprises joint ASR and diarization in far-field settings with multiple, and possibly heterogeneous, recording devices. Different from previous challenges, we evaluate systems on 3 diverse scenarios: CHiME-6, DiPCo, and Mixer 6. The goal is for participants to devise a single system that can generalize across different array geometries and use cases with no a-priori information. Another departure from earlier CHiME iterations is that participants are allowed to use open-source pre-trained models and datasets. In this paper, we describe the challenge design, motivation, and fundamental research questions in detail. We also present the baseline system, which is fully array-topology agnostic and features multi-channel diarization, channel selection, guided source separation and a robust ASR model that leverages self-supervised speech representations (SSLR).


Exploring Self-Attention Mechanisms for Speech Separation

arXiv.org Artificial Intelligence

Transformers have enabled impressive improvements in deep learning. They often outperform recurrent and convolutional models in many tasks while taking advantage of parallel processing. Recently, we proposed the SepFormer, which obtains state-of-the-art performance in speech separation with the WSJ0-2/3 Mix datasets. This paper studies in-depth Transformers for speech separation. In particular, we extend our previous findings on the SepFormer by providing results on more challenging noisy and noisy-reverberant datasets, such as LibriMix, WHAM!, and WHAMR!. Moreover, we extend our model to perform speech enhancement and provide experimental evidence on denoising and dereverberation tasks. Finally, we investigate, for the first time in speech separation, the use of efficient self-attention mechanisms such as Linformers, Lonformers, and ReFormers. We found that they reduce memory requirements significantly. For example, we show that the Reformer-based attention outperforms the popular Conv-TasNet model on the WSJ0-2Mix dataset while being faster at inference and comparable in terms of memory consumption.


End-to-End Integration of Speech Separation and Voice Activity Detection for Low-Latency Diarization of Telephone Conversations

arXiv.org Artificial Intelligence

Recent works show that speech separation guided diarization (SSGD) is an increasingly promising direction, mainly thanks to the recent progress in speech separation. It performs diarization by first separating the speakers and then applying voice activity detection (VAD) on each separated stream. In this work we conduct an in-depth study of SSGD in the conversational telephone speech (CTS) domain, focusing mainly on low-latency streaming diarization applications. We consider three state-of-the-art speech separation (SSep) algorithms and study their performance both in online and offline scenarios, considering non-causal and causal implementations as well as continuous SSep (CSS) windowed inference. We compare different SSGD algorithms on two widely used CTS datasets: CALLHOME and Fisher Corpus (Part 1 and 2) and evaluate both separation and diarization performance. To improve performance, a novel, causal and computationally efficient leakage removal algorithm is proposed, which significantly decreases false alarms. We also explore, for the first time, fully end-to-end SSGD integration between SSep and VAD modules. Crucially, this enables fine-tuning on real-world data for which oracle speakers sources are not available. In particular, our best model achieves 8.8% DER on CALLHOME, which outperforms the current state-of-the-art end-to-end neural diarization model, despite being trained on an order of magnitude less data and having significantly lower latency, i.e., 0.1 vs. 1 seconds. Finally, we also show that the separated signals can be readily used also for automatic speech recognition, reaching performance close to using oracle sources in some configurations.


ESPnet-SE++: Speech Enhancement for Robust Speech Recognition, Translation, and Understanding

arXiv.org Artificial Intelligence

This paper presents recent progress on integrating speech separation and enhancement (SSE) into the ESPnet toolkit. Compared with the previous ESPnet-SE work, numerous features have been added, including recent state-of-the-art speech enhancement models with their respective training and evaluation recipes. Importantly, a new interface has been designed to flexibly combine speech enhancement front-ends with other tasks, including automatic speech recognition (ASR), speech translation (ST), and spoken language understanding (SLU). To showcase such integration, we performed experiments on carefully designed synthetic datasets for noisy-reverberant multi-channel ST and SLU tasks, which can be used as benchmark corpora for future research. In addition to these new tasks, we also use CHiME-4 and WSJ0-2Mix to benchmark multi- and single-channel SE approaches. Results show that the integration of SE front-ends with back-end tasks is a promising research direction even for tasks besides ASR, especially in the multi-channel scenario. The code is available online at https://github.com/ESPnet/ESPnet. The multi-channel ST and SLU datasets, which are another contribution of this work, are released on HuggingFace.


The impact of non-target events in synthetic soundscapes for sound event detection

arXiv.org Artificial Intelligence

Detection and Classification Acoustic Scene and Events Challenge 2021 Task 4 uses a heterogeneous dataset that includes both recorded and synthetic soundscapes. Until recently only target sound events were considered when synthesizing the soundscapes. However, recorded soundscapes often contain a substantial amount of non-target events that may affect the performance. In this paper, we focus on the impact of these non-target events in the synthetic soundscapes. Firstly, we investigate to what extent using non-target events alternatively during the training or validation phase (or none of them) helps the system to correctly detect target events. Secondly, we analyze to what extend adjusting the signal-to-noise ratio between target and non-target events at training improves the sound event detection performance. The results show that using both target and non-target events for only one of the phases (validation or training) helps the system to properly detect sound events, outperforming the baseline (which uses non-target events in both phases). The paper also reports the results of a preliminary study on evaluating the system on clips that contain only non-target events. This opens questions for future work on non-target subset and acoustic similarity between target and non-target events which might confuse the system.


SpeechBrain: A General-Purpose Speech Toolkit

arXiv.org Artificial Intelligence

SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to facilitate the research and development of neural speech processing technologies by being simple, flexible, user-friendly, and well-documented. This paper describes the core architecture designed to support several tasks of common interest, allowing users to naturally conceive, compare and share novel speech processing pipelines. SpeechBrain achieves competitive or state-of-the-art performance in a wide range of speech benchmarks. It also provides training recipes, pretrained models, and inference scripts for popular speech datasets, as well as tutorials which allow anyone with basic Python proficiency to familiarize themselves with speech technologies.