Goto

Collaborating Authors

 Conati, Cristina


Relevant Irrelevance: Generating Alterfactual Explanations for Image Classifiers

arXiv.org Artificial Intelligence

In this paper, we demonstrate the feasibility of alterfactual explanations for black box image classifiers. Traditional explanation mechanisms from the field of Counterfactual Thinking are a widely-used paradigm for Explainable Artificial Intelligence (XAI), as they follow a natural way of reasoning that humans are familiar with. However, most common approaches from this field are based on communicating information about features or characteristics that are especially important for an AI's decision. However, to fully understand a decision, not only knowledge about relevant features is needed, but the awareness of irrelevant information also highly contributes to the creation of a user's mental model of an AI system. To this end, a novel approach for explaining AI systems called alterfactual explanations was recently proposed on a conceptual level. It is based on showing an alternative reality where irrelevant features of an AI's input are altered. By doing so, the user directly sees which input data characteristics can change arbitrarily without influencing the AI's decision. In this paper, we show for the first time that it is possible to apply this idea to black box models based on neural networks. To this end, we present a GAN-based approach to generate these alterfactual explanations for binary image classifiers. Further, we present a user study that gives interesting insights on how alterfactual explanations can complement counterfactual explanations.


Personalizing explanations of AI-driven hints to users' cognitive abilities: an empirical evaluation

arXiv.org Artificial Intelligence

We investigate personalizing the explanations that an Intelligent Tutoring System generates to justify the hints it provides to students to foster their learning. The personalization targets students with low levels of two traits, Need for Cognition and Conscientiousness, and aims to enhance these students' engagement with the explanations, based on prior findings that these students do not naturally engage with the explanations but they would benefit from them if they do. To evaluate the effectiveness of the personalization, we conducted a user study where we found that our proposed personalization significantly increases our target users' interaction with the hint explanations, their understanding of the hints and their learning. Hence, this work provides valuable insights into effectively personalizing AI-driven explanations for cognitively demanding tasks such as learning.


Classification of Alzheimers Disease with Deep Learning on Eye-tracking Data

arXiv.org Artificial Intelligence

Existing research has shown the potential of classifying Alzheimers Disease (AD) from eye-tracking (ET) data with classifiers that rely on task-specific engineered features. In this paper, we investigate whether we can improve on existing results by using a Deep-Learning classifier trained end-to-end on raw ET data. This classifier (VTNet) uses a GRU and a CNN in parallel to leverage both visual (V) and temporal (T) representations of ET data and was previously used to detect user confusion while processing visual displays. A main challenge in applying VTNet to our target AD classification task is that the available ET data sequences are much longer than those used in the previous confusion detection task, pushing the limits of what is manageable by LSTM-based models. We discuss how we address this challenge and show that VTNet outperforms the state-of-the-art approaches in AD classification, providing encouraging evidence on the generality of this model to make predictions from ET data.


Evaluating the overall sensitivity of saliency-based explanation methods

arXiv.org Artificial Intelligence

We address the need to generate faithful explanations of "black box" Deep Learning models. Several tests have been proposed to determine aspects of faithfulness of explanation methods, but they lack cross-domain applicability and a rigorous methodology. Hence, we select an existing test that is model agnostic and is well-suited for comparing one aspect of faithfulness (i.e., sensitivity) of multiple explanation methods, and extend it by specifying formal thresh-olds and building criteria to determine the over-all sensitivity of the explanation method. We present examples of how multiple explanation methods for Convolutional Neural Networks can be compared using this extended methodology. Finally, we discuss the relationship between sensitivity and faithfulness and consider how the test can be adapted to assess different explanation methods in other domains.


A Theoretical Framework for AI Models Explainability with Application in Biomedicine

arXiv.org Artificial Intelligence

EXplainable Artificial Intelligence (XAI) is a vibrant research topic in the artificial intelligence community, with growing interest across methods and domains. Much has been written about the subject, yet XAI still lacks shared terminology and a framework capable of providing structural soundness to explanations. In our work, we address these issues by proposing a novel definition of explanation that is a synthesis of what can be found in the literature. We recognize that explanations are not atomic but the combination of evidence stemming from the model and its input-output mapping, and the human interpretation of this evidence. Furthermore, we fit explanations into the properties of faithfulness (i.e., the explanation being a true description of the model's inner workings and decision-making process) and plausibility (i.e., how much the explanation looks convincing to the user). Using our proposed theoretical framework simplifies how these properties are operationalized and it provides new insight into common explanation methods that we analyze as case studies.


Cascading Convolutional Temporal Colour Constancy

arXiv.org Artificial Intelligence

Computational Colour Constancy (CCC) consists of estimating the colour of one or more illuminants in a scene and using them to remove unwanted chromatic distortions. Much research has focused on illuminant estimation for CCC on single images, with few attempts of leveraging the temporal information intrinsic in sequences of correlated images (e.g., the frames in a video), a task known as Temporal Colour Constancy (TCC). The state-of-the-art for TCC is TCCNet, a deep-learning architecture that uses a ConvLSTM for aggregating the encodings produced by CNN submodules for each image in a sequence. We extend this architecture with different models obtained by (i) substituting the TCCNet submodules with C4, the state-of-the-art method for CCC targeting images; (ii) adding a cascading strategy to perform an iterative improvement of the estimate of the illuminant. We tested our models on the recently released TCC benchmark and achieved results that surpass the state-of-the-art. Analyzing the impact of the number of frames involved in illuminant estimation on performance, we show that it is possible to reduce inference time by training the models on few selected frames from the sequences while retaining comparable accuracy.


A Framework to Counteract Suboptimal User-Behaviors in Exploratory Learning Environments: an Application to MOOCs

arXiv.org Artificial Intelligence

While there is evidence that user-adaptive support can greatly enhance the effectiveness of educational systems, designing such support for exploratory learning environments (e.g., simulations) is still challenging due to the open-ended nature of their interaction. In particular, there is little a priori knowledge of which student's behaviors can be detrimental to learning in such environments. To address this problem, we focus on a data-driven user-modeling framework that uses logged interaction data to learn which behavioral or activity patterns should trigger help during interaction with a specific learning environment. This framework has been successfully used to provide adaptive support in interactive learning simulations. Here we present a novel application of this framework we are working on, namely to Massive Open Online Courses (MOOCs), a form of exploratory environment that could greatly benefit from adaptive support due to the large diversity of their users, but typically lack of such adaptation. We describe an experiment aimed at investigating the value of our framework to identify student's behaviors that can justify adapting to, and report some preliminary results.


AI in Education needs interpretable machine learning: Lessons from Open Learner Modelling

arXiv.org Artificial Intelligence

Interpretability of the underlying AI representations is a key raison d'\^{e}tre for Open Learner Modelling (OLM) -- a branch of Intelligent Tutoring Systems (ITS) research. OLMs provide tools for 'opening' up the AI models of learners' cognition and emotions for the purpose of supporting human learning and teaching. Over thirty years of research in ITS (also known as AI in Education) produced important work, which informs about how AI can be used in Education to best effects and, through the OLM research, what are the necessary considerations to make it interpretable and explainable for the benefit of learning. We argue that this work can provide a valuable starting point for a framework of interpretable AI, and as such is of relevance to the application of both knowledge-based and machine learning systems in other high-stakes contexts, beyond education.


Towards User-Adaptive Information Visualization

AAAI Conferences

This paper summarizes an ongoing multi-year project aiming to uncover knowledge and techniques for devising intelligent environments for user-adaptive visualizations. We ran three studies designed to investigate the impact of user and task characteristics on user performance and satisfaction in different visualization contexts. Eye-tracking data collected in each study was analyzed to uncover possible interactions between user/task characteristics and gaze behavior during visualization processing. Finally, we investigated user models that can assess user characteristics relevant for adaptation from eye tracking data.


Constructing Models of User and Task Characteristics from Eye Gaze Data for User-Adaptive Information Highlighting

AAAI Conferences

A user-adaptive information visualization system capable of learning models of users and the visualization tasks they perform could provide interventions optimized for helping specific users in specific task contexts. In this paper, we investigate the accuracy of predicting visualization tasks, user performance on tasks, and user traits from gaze data. We show that predictions made with a logistic regression model are significantly better than a baseline classifier, with particularly strong results for predicting task type and user performance. Furthermore, we compare classifiers built with interface-independent and interface-dependent features, and show that the interface-independent features are comparable or superior to interface-dependent ones. Finally, we discuss how the accuracy of predictive models is affected if they are trained with data from trials that had highlighting interventions added to the visualization.