Goto

Collaborating Authors

 Clifford, Gari D.


Edge AI for Real-time Fetal Assessment in Rural Guatemala

arXiv.org Artificial Intelligence

Perinatal complications, defined as conditions that arise during pregnancy, childbirth, and the immediate postpartum period, represent a significant burden on maternal and neonatal health worldwide. Factors contributing to these disparities include limited access to quality healthcare, socioeconomic inequalities, and variations in healthcare infrastructure. Addressing these issues is crucial for improving health outcomes for mothers and newborns, particularly in underserved communities. To mitigate these challenges, we have developed an AI-enabled smartphone application designed to provide decision support at the point-of-care. This tool aims to enhance health monitoring during pregnancy by leveraging machine learning (ML) techniques. The intended use of this application is to assist midwives during routine home visits by offering real-time analysis and providing feedback based on collected data. The application integrates TensorFlow Lite (TFLite) and other Python-based algorithms within a Kotlin framework to process data in real-time. It is designed for use in low-resource settings, where traditional healthcare infrastructure may be lacking. The intended patient population includes pregnant women and new mothers in underserved areas and the developed system was piloted in rural Guatemala. This ML-based solution addresses the critical need for accessible and quality perinatal care by empowering healthcare providers with decision support tools to improve maternal and neonatal health outcomes.


Detecting Cognitive Impairment and Psychological Well-being among Older Adults Using Facial, Acoustic, Linguistic, and Cardiovascular Patterns Derived from Remote Conversations

arXiv.org Artificial Intelligence

The aging society urgently requires scalable methods to monitor cognitive decline and identify social and psychological factors indicative of dementia risk in older adults. Our machine learning (ML) models captured facial, acoustic, linguistic, and cardiovascular features from 39 individuals with normal cognition or Mild Cognitive Impairment derived from remote video conversations and classified cognitive status, social isolation, neuroticism, and psychological well-being. Our model could distinguish Clinical Dementia Rating Scale (CDR) of 0.5 (vs. 0) with 0.78 area under the receiver operating characteristic curve (AUC), social isolation with 0.75 AUC, neuroticism with 0.71 AUC, and negative affect scales with 0.79 AUC. Recent advances in machine learning offer new opportunities to remotely detect cognitive impairment and assess associated factors, such as neuroticism and psychological well-being. Our experiment showed that speech and language patterns were more useful for quantifying cognitive impairment, whereas facial expression and cardiovascular patterns using photoplethysmography (PPG) were more useful for quantifying personality and psychological well-being.


Electromechanical Dynamics of the Heart: A Study of Cardiac Hysteresis During Physical Stress Test

arXiv.org Artificial Intelligence

Cardiovascular diseases are best diagnosed using multiple modalities that assess both the heart's electrical and mechanical functions. While effective, imaging techniques like echocardiography and nuclear imaging are costly and not widely accessible. More affordable technologies, such as simultaneous electrocardiography (ECG) and phonocardiography (PCG), may provide valuable insights into electromechanical coupling and could be useful for prescreening in low-resource settings. Using physical stress test data from the EPHNOGRAM ECG-PCG dataset, collected from 23 healthy male subjects (age: 25.4+/-1.9 yrs), we investigated electromechanical intervals (RR, QT, systolic, and diastolic) and their interactions during exercise, along with hysteresis between cardiac electrical activity and mechanical responses. Time delay analysis revealed distinct temporal relationships between QT, systolic, and diastolic intervals, with RR as the primary driver. The diastolic interval showed near-synchrony with RR, while QT responded to RR interval changes with an average delay of 10.5s, and the systolic interval responded more slowly, with an average delay of 28.3s. We examined QT-RR, systolic-RR, and diastolic-RR hysteresis, finding narrower loops for diastolic RR and wider loops for systolic RR. Significant correlations (average:0.75) were found between heart rate changes and hysteresis loop areas, suggesting the equivalent circular area diameter as a promising biomarker for cardiac function under exercise stress. Deep learning models, including Long Short-Term Memory and Convolutional Neural Networks, estimated the QT, systolic, and diastolic intervals from RR data, confirming the nonlinear relationship between RR and other intervals. Findings highlight a significant cardiac memory effect, linking ECG and PCG morphology and timing to heart rate history.


ECG-Image-Database: A Dataset of ECG Images with Real-World Imaging and Scanning Artifacts; A Foundation for Computerized ECG Image Digitization and Analysis

arXiv.org Artificial Intelligence

We introduce the ECG-Image-Database, a large and diverse collection of electrocardiogram (ECG) images generated from ECG time-series data, with real-world scanning, imaging, and physical artifacts. We used ECG-Image-Kit, an open-source Python toolkit, to generate realistic images of 12-lead ECG printouts from raw ECG time-series. The images include realistic distortions such as noise, wrinkles, stains, and perspective shifts, generated both digitally and physically. The toolkit was applied to 977 12-lead ECG records from the PTB-XL database and 1,000 from Emory Healthcare to create high-fidelity synthetic ECG images. These unique images were subjected to both programmatic distortions using ECG-Image-Kit and physical effects like soaking, staining, and mold growth, followed by scanning and photography under various lighting conditions to create real-world artifacts. The resulting dataset includes 35,595 software-labeled ECG images with a wide range of imaging artifacts and distortions. The dataset provides ground truth time-series data alongside the images, offering a reference for developing machine and deep learning models for ECG digitization and classification. The images vary in quality, from clear scans of clean papers to noisy photographs of degraded papers, enabling the development of more generalizable digitization algorithms. ECG-Image-Database addresses a critical need for digitizing paper-based and non-digital ECGs for computerized analysis, providing a foundation for developing robust machine and deep learning models capable of converting ECG images into time-series. The dataset aims to serve as a reference for ECG digitization and computerized annotation efforts. ECG-Image-Database was used in the PhysioNet Challenge 2024 on ECG image digitization and classification.


Benchmarking changepoint detection algorithms on cardiac time series

arXiv.org Machine Learning

The pattern of state changes in a biomedical time series can be related to health or disease. This work presents a principled approach for selecting a changepoint detection algorithm for a specific task, such as disease classification. Eight key algorithms were compared, and the performance of each algorithm was evaluated as a function of temporal tolerance, noise, and abnormal conduction (ectopy) on realistic artificial cardiovascular time series data. All algorithms were applied to real data (cardiac time series of 22 patients with REM-behavior disorder (RBD) and 15 healthy controls) using the parameters selected on artificial data. Finally, features were derived from the detected changepoints to classify RBD patients from healthy controls using a K-Nearest Neighbors approach. On artificial data, Modified Bayesian Changepoint Detection algorithm provided superior positive predictive value for state change identification while Recursive Mean Difference Maximization (RMDM) achieved the highest true positive rate. For the classification task, features derived from the RMDM algorithm provided the highest leave one out cross validated accuracy of 0.89 and true positive rate of 0.87. Automatically detected changepoints provide useful information about subject's physiological state which cannot be directly observed. However, the choice of change point detection algorithm depends on the nature of the underlying data and the downstream application, such as a classification task. This work represents the first time change point detection algorithms have been compared in a meaningful way and utilized in a classification task, which demonstrates the effect of changepoint algorithm choice on application performance.


Point-of-Care Real-Time Signal Quality for Fetal Doppler Ultrasound Using a Deep Learning Approach

arXiv.org Artificial Intelligence

In this study, we present a deep learning framework designed to integrate with our previously developed system that facilitates large-scale 1D fetal Doppler data collection, aiming to enhance data quality. This system, tailored for traditional Indigenous midwives in low-resource communities, leverages a cost-effective Android phone to improve the quality of recorded signals. We have shown that the Doppler data can be used to identify fetal growth restriction, hypertension, and other concerning issues during pregnancy. However, the quality of the signal is dependent on many factors, including radio frequency interference, position of the fetus, maternal body habitus, and usage of the Doppler by the birth attendants. In order to provide instant feedback to allow correction of the data at source, a signal quality metric is required that can run in real-time on the mobile phone. In this study, 191 DUS signals with durations mainly in the range between 5 to 10 minutes were evaluated for quality and classified into five categories: Good, Poor, (Radiofrequency) Interference, Talking, and Silent, at a resolution of 3.75 seconds. A deep neural network was trained on each 3.75-second segment from these recordings and validated using five-fold cross-validation. An average micro F1 = 97.4\% and macro F1 = 94.2\% were achieved, with F1 = 99.2\% for `Good' quality data. These results indicate that the algorithm, which will now be implemented in the midwives' app, should allow a significant increase in the quality of data at the time of capture.


A Survey on Blood Pressure Measurement Technologies: Addressing Potential Sources of Bias

arXiv.org Artificial Intelligence

Regular blood pressure (BP) monitoring in clinical and ambulatory settings plays a crucial role in the prevention, diagnosis, treatment, and management of cardiovascular diseases. Recently, the widespread adoption of ambulatory BP measurement devices has been driven predominantly by the increased prevalence of hypertension and its associated risks and clinical conditions. Recent guidelines advocate for regular BP monitoring as part of regular clinical visits or even at home. This increased utilization of BP measurement technologies has brought up significant concerns, regarding the accuracy of reported BP values across settings. In this survey, focusing mainly on cuff-based BP monitoring technologies, we highlight how BP measurements can demonstrate substantial biases and variances due to factors such as measurement and device errors, demographics, and body habitus. With these inherent biases, the development of a new generation of cuff-based BP devices which use artificial-intelligence (AI) has significant potential. We present future avenues where AI-assisted technologies can leverage the extensive clinical literature on BP-related studies together with the large collections of BP records available in electronic health records. These resources can be combined with machine learning approaches, including deep learning and Bayesian inference, to remove BP measurement biases and to provide individualized BP-related cardiovascular risk indexes.


A Feasibility Study on Indoor Localization and Multi-person Tracking Using Sparsely Distributed Camera Network with Edge Computing

arXiv.org Artificial Intelligence

Camera-based activity monitoring systems are becoming an attractive solution for smart building applications with the advances in computer vision and edge computing technologies. In this paper, we present a feasibility study and systematic analysis of a camera-based indoor localization and multi-person tracking system implemented on edge computing devices within a large indoor space. To this end, we deployed an end-to-end edge computing pipeline that utilizes multiple cameras to achieve localization, body orientation estimation and tracking of multiple individuals within a large therapeutic space spanning $1700m^2$, all while maintaining a strong focus on preserving privacy. Our pipeline consists of 39 edge computing camera systems equipped with Tensor Processing Units (TPUs) placed in the indoor space's ceiling. To ensure the privacy of individuals, a real-time multi-person pose estimation algorithm runs on the TPU of the computing camera system. This algorithm extracts poses and bounding boxes, which are utilized for indoor localization, body orientation estimation, and multi-person tracking. Our pipeline demonstrated an average localization error of 1.41 meters, a multiple-object tracking accuracy score of 88.6\%, and a mean absolute body orientation error of 29\degree. These results shows that localization and tracking of individuals in a large indoor space is feasible even with the privacy constrains.


A Data-Driven Gaussian Process Filter for Electrocardiogram Denoising

arXiv.org Artificial Intelligence

Objective: Gaussian Processes (GP)-based filters, which have been effectively used for various applications including electrocardiogram (ECG) filtering can be computationally demanding and the choice of their hyperparameters is typically ad hoc. Methods: We develop a data-driven GP filter to address both issues, using the notion of the ECG phase domain -- a time-warped representation of the ECG beats onto a fixed number of samples and aligned R-peaks, which is assumed to follow a Gaussian distribution. Under this assumption, the computation of the sample mean and covariance matrix is simplified, enabling an efficient implementation of the GP filter in a data-driven manner, with no ad hoc hyperparameters. The proposed filter is evaluated and compared with a state-of-the-art wavelet-based filter, on the PhysioNet QT Database. The performance is evaluated by measuring the signal-to-noise ratio (SNR) improvement of the filter at SNR levels ranging from -5 to 30dB, in 5dB steps, using additive noise. For a clinical evaluation, the error between the estimated QT-intervals of the original and filtered signals is measured and compared with the benchmark filter. Results: It is shown that the proposed GP filter outperforms the benchmark filter for all the tested noise levels. It also outperforms the state-of-the-art filter in terms of QT-interval estimation error bias and variance. Conclusion: The proposed GP filter is a versatile technique for preprocessing the ECG in clinical and research applications, is applicable to ECG of arbitrary lengths and sampling frequencies, and provides confidence intervals for its performance.


Addressing Class Imbalance in Classification Problems of Noisy Signals by using Fourier Transform Surrogates

arXiv.org Machine Learning

Randomizing the Fourier-transform (FT) phases of temporal-spatial data generates surrogates that approximate examples from the data-generating distribution. We propose such FT surrogates as a novel tool to augment and analyze training of neural networks and explore the approach in the example of sleep-stage classification. By computing FT surrogates of raw EEG, EOG, and EMG signals of under-represented sleep stages, we balanced the CAPSLPDB sleep database. We then trained and tested a convolutional neural network for sleep stage classification, and found that our surrogate-based augmentation improved the mean F1-score by 7%. As another application of FT surrogates, we formulated an approach to compute saliency maps for individual sleep epochs. The visualization is based on the response of inferred class probabilities under replacement of short data segments by partial surrogates. To quantify how well the distributions of the surrogates and the original data match, we evaluated a trained classifier on surrogates of correctly classified examples, and summarized these conditional predictions in a confusion matrix. We show how such conditional confusion matrices can qualitatively explain the performance of surrogates in class balancing. The FT-surrogate augmentation approach may improve classification on noisy signals if carefully adapted to the data distribution under analysis.